Korean | English

pISSN : 1976-4251 / eISSN : 2233-4998

2020 KCI Impact Factor : 0.33
Home > Explore Content > All Issues > Article List

2015, Vol.16, No.3

  • 1.

    Bulk graphite: materials and manufacturing process

    LeeSangMin | 강동수 | Jaeseung Roh | 2015, 16(3) | pp.135~146 | number of Cited : 5
    Graphite can be classified into natural graphite from mines and artificial graphite. Due to its outstanding properties such as light weight, thermal resistance, electrical conductivity, thermal conductivity, chemical stability, and high-temperature strength, artificial graphite is used across various industries in powder form and bulk form. Artificial graphite of powder form is usually used as anode materials for secondary cells, while artificial graphite of bulk form is used in steelmaking electrode bars, nuclear reactor moderators, silicon ingots for semiconductors, and manufacturing equipment. This study defines artificial graphite as bulk graphite, and provides an overview of bulk graphite manufacturing, including isotropic and anisotropic materials, molding methods, and heat treatment.
  • 2.

    Effects of cross-linking methods for polyethylene-based carbon fibers: review

    김관우 | Lee hye-min | Jeong-Hun An and 5other persons | 2015, 16(3) | pp.147~170 | number of Cited : 2
    In recent decades, there has been an increasing interest in the use of carbon fiber reinforced plastic (CFRP) in aerospace, renewable energy and other industries, due to its low weight and relatively good mechanical properties compared with traditional metals. However, due to the high cost of petroleum-based precursors and their associated processing costs, CF remains a specialty product and as such has been limited to use in high-end aerospace, sporting goods, automotive, and specialist industrial applications. The high cost of CF is a problem in various applications and the use of CFRP has been impeded by the high cost of CF in various applications. This paper presents an overview of research related to the fabrication of low cost CF using polyethylene (PE) control technology, and identifies areas requiring additional research and development. It critically reviews the results of cross-linked PE control technology studies, and the development of promising control technologies, including acid, peroxide, radiation and silane cross-linking methods.
  • 3.

    Mesophase formation behavior in petroleum residues

    Subhash Kumar | Manoj Srivastava | 2015, 16(3) | pp.171~182 | number of Cited : 4
    Mesophase pitch is an important starting material for making a wide spectrum of industrial and advanced carbon products. It is produced by pyrolysis of petroleum residues. In this work, mesophase formation behavior in petroleum residues was studied to prepare environmentally- benign mesophase pitches, and the composition of petroleum residues and its influence on the mesophase formation was investigated. Two petroleum residues, i.e., clarified oil s (CLO-1, CLO-2) obtained from fluid catalytic cracking units of different Indian petroleum refineries, were taken as feed stocks. A third petroleum residue, aromatic extract (AE), was produced by extraction of one of the CLO-1 by using N-methyl pyrrolidone solvent. These petroleum residues were thermally treated at 380°C to examine their mesophase formation behavior. Mesophase pitches produced as a result of thermal treatment were characterized physico-chemically, as well as by instrumental techniques such as Fourier-transform infrared spectroscopy, nuclear magnetic resonance, X-ray diffraction and thermogravimetry/derivative thermogravimetry. Thermal treatment of these petroleum residues led to formation of a liquid-crystalline phase (mesophase). The mesophase formation behavior in the petroleum residues was analyzed by optical microscopy. Mesophase pitch prepared from CLO-2 exhibited the highest mesophase content (53 vol%) as compared to other mesophase pitches prepared from CLO-1 and AE.
  • 4.

    Nanoporous graphene oxide membrane and its application in molecular sieving

    S. Mahmood Fatemi | Masoud Arabieh | Hamid Sepehrian | 2015, 16(3) | pp.183~191 | number of Cited : 1
    Gas transport through graphene-derived membranes has gained much interest recently due to its promising potential in filtration and separation applications. In this work, we explore Kr-85 gas radionuclide sequestration from natural air in nanoporous graphene oxide membranes in which different sizes and geometries of pores were modeled on the graphene oxide sheet. This was done using atomistic simulations considering mean-squared displacement, diffusion coefficient, number of crossed species of gases through nanoporous graphene oxide, and flow through interlayer galleries. The results showed that the gas features have the densest adsorbed zone in nanoporous graphene oxide, compared with a graphene membrane, and that graphene oxide was more favorable than graphene for Kr separation. The aim of this paper is to show that for the well-defined pore size called P-7, it is possible to separate Kr-85 from a gas mixture containing Kr-85, O2 and N2. The results would benefit the oil industry among others.
  • 5.

    Molecular approach to hexagonal and cubic diamond nanocrystals

    Mudar Ahmed Abdulsattar | 2015, 16(3) | pp.192~197 | number of Cited : 0
    In the present work, we propose a molecule (C14H14) that can be used as a building block of hexagonal diamond-type crystals and nanocrystals, including wurtzite structures. This molecule and its combined blocks are similar to diamondoid molecules that are used as building blocks of cubic diamond crystals and nanocrystals. The hexagonal part of this molecule is included in the C12 central part of this molecule. This part can be repeated to increase the ratio of hexagonal to cubic diamond and other structures. The calculated energy gap of these molecules (called hereafter wurtzoids) shows the expected trend of gaps that are less than that of cubic diamondoid structures. The calculated binding energy per atom shows that wurtzoids are tighter structures than diamondoids. Distribution of angles and bonds manifest the main differences between hexagonal and cubic diamond-type structures. Charge transfer, infrared, nuclear magnetic resonance and ultraviolet-visible spectra are investigated to identify the main spectroscopic differences between hexagonal and cubic structures at the molecular and nanoscale. Natural bond orbital population analysis shows that the bonding of the present wurtzoids and diamondoids differs from ideal sp3 bonding. The bonding for carbon valence orbitals is in the range (2s0.982p3.213p0.02)-(2s0.942p3.313p0.02) for wurtzoid and (2s0.932p3.293p0.01)-(2s0.992p3.443p0.01) for diamantane.
  • 6.

    Influence of defective sites in Pt/C catalysts on the anode of direct methanol fuel cell and their role in CO poisoning: a first-principles study

    SOONCHUL KWON | Seung Geol Lee | 2015, 16(3) | pp.198~202 | number of Cited : 2
    Carbon-supported Pt catalyst systems containing defect adsorption sites on the anode of direct methanol fuel cells were investigated, to elucidate the mechanisms of H2 dissociation and carbon monoxide (CO) poisoning. Density functional theory calculations were carried out to determine the effect of defect sites located neighboring to or distant from the Pt catalyst on H2 and CO adsorption properties, based on electronic properties such as adsorption energy and electronic band gap. Interestingly, the presence of neighboring defect sites led to a reduction of H2 dissociation and CO poisoning due to atomic Pt filling the defect sites. At distant sites, H2 dissociation was active on Pt, but CO filled the defect sites to form carbon π-π bonds, thus enhancing the oxidation of the carbon surface. It should be noted that defect sites can cause CO poisoning, thereby deactivating the anode gradually.
  • 7.

    Manufacturing and characteristics of PAN-based composite carbon fibers containing cellulose particles

    양지우 | 진다영 | 이지은 and 2other persons | 2015, 16(3) | pp.203~210 | number of Cited : 0
    This study fabricated low thermal conductive polyacrylonitrile (PAN)-based carbon fibers containing cellulose particles while maintaining their mechanical properties. The high thermal conductivity of carbon fibers limits their application as a high temperature insulator in various systems such as an insulator for propulsion parts in aerospace or missile systems. By controlling process parameters such as the heat treatment temperature of the cellulose particles and the amount of cellulose added, the thermal and mechanical properties of the PANbased carbon fibers were investigated. The results show that it is possible to manufacture composite carbon fibers with low thermal conductivity. That is, thermal conductivities were reduced by the cellulose particles in the PAN based carbon fibers while at the same time, the tensile strength loss was minimized, and the tensile modulus increased.
  • 8.

    Non-blinking dendritic crystals from C-dot solution

    Ashmi Mewada | Ritesh Vishwakarma | Bhushan Patil and 4other persons | 2015, 16(3) | pp.211~214 | number of Cited : 0
    Bio-imaging and drug carriers for delivery have created a huge demand for crystals. Crystals are fascinating materials that have been grown for a long time but obtaining biocompatible fluorescent crystals is a challenging task. We report on the growth of fluorescent crystals using a carbon dot (C-dot) solution by a hydrothermal process. The crystallization pattern of these C-dots exhibited a unique dendritic structure having a feather-like morphology. The growth temperature and pressure were maintained at 60°C and 200 mmHg, respectively, for crystal growth. A green fluorescence (under UV light) that was observed in the C-dot solution was retained in the crystals formed from the solution. Cytotoxicity studies on Vero cells revealed the crystals to be extremely biocompatible. These fluorescent crystals are extremely well suited for biomedical and optoelectronic applications.
  • 9.

    Micro-sized carbon with dimple patterns prepared using an electro-spray method

    박미선 | Lee, Young-Seak | 2015, 16(3) | pp.215~218 | number of Cited : 0
    Carbon micro particles with dimple patterns were produced by electro-spraying a solution of pitch in tetrahydrofuran. Particle formation depended on separation in an electrical field and volatilization of the solvent. More than 80% of the obtained carbon exhibited an average particle size of less than 50 μm. X-ray diffraction analysis suggests that the carbon with dimple patterns has increased crystallinity after heat treatment.
  • 10.

    Influence of oxidative atmosphere of the electron beam irradiation on cyclization of PAN-based fibers

    Hye Kyoung Shin | 박미라 | KIM HAK YONG and 1other persons | 2015, 16(3) | pp.219~221 | number of Cited : 2
    In order to study the impact of atmosphere during electron beam irradiation (EBI) of polyacrylonitrile (PAN) precursor fibers, the latter were stabilized by EBI in both air and oxygen atmospheres. Gel-fraction determination indicated that EBI-stabilization under an oxygen atmosphere leads to an enhanced cyclization in the PAN fibers. In the Fourier-transform infrared spectroscopy analysis, the PAN fibers stabilized by EBI under an oxygen atmosphere exhibited a greater decrease in the peak intensity at 2244 cm-1 (C≡N vibration) and a greater increase in the peak intensity at 1628 cm-1 (C=N absorption) than the corresponding PAN fibers stabilized under an air atmosphere. From the X-ray diffraction analysis it was found that oxygen uptake in PAN fibers leads to an increase in the amorphous region, produced by cyclization.