Carbon Letters 2022 KCI Impact Factor : 0.87

Korean | English

pISSN : 1976-4251 / eISSN : 2233-4998
Home > Explore Content > All Issues > Article List

2023, Vol.33, No.3

  • 1.

    Graphene oxide: Fe2O3 nanocomposite: synthesis, properties, and applications

    Idisi David O. , Aigbe Uyiosa Osagie , Ahia Chinedu C. and 1 other persons | 2023, 33(3) | pp.605~640 | number of Cited : 0
    Graphene oxide/Iron III oxide (GO: Fe2O3) nanocomposites (NCs) have been topical in recent times owing to the enhanced properties they exhibit. GO acting as a graphene derivative has demonstrated superior features as obtainable in a graphene sheet. Furthermore, the attachment of oxygen functional groups at its basal and edge planes of graphene has allowed for easy metal/oxide functionalization for improved properties harvesting. Fe2O3 nanoparticles (NPs) on the other hand have polymorphic property enabling the degeneracy of Fe2O3 in different phases, thereby resulting in different physical and crystalline properties when used to functionalize GO. The properties of GO: Fe2O3 have been applied to supercapacitor energy harvesting, Li-ion batteries, and biomedicine. The enhanced properties are attributed to the adsorption and electronic structure properties of Fe atoms. In this review, the various synthesis used in the preparation of reduced/graphene oxide: Fe2O3 is discussed. As indicated in the considered literature, the XPS analysis suggests electronic bond interactions between C–C, C–O, C–Fe and Fe–C. The available report on UPS measurements further suggests the formation of mixed states emanating from π and σ bonds. The discussed reports further suggest that the various applications based on the harvesting of electronic, electrical, and magnetic properties are due to the ionic and exchange interactions between the different orbital states of carbon, oxygen and iron. The challenges and future prospects of the synthesis and application of GO/Fe2O3 are examined.
  • 2.

    Utilization of graphene to attain sustainability in mine methodology: a review

    Mohanty Anshuman | 2023, 33(3) | pp.641~660 | number of Cited : 0
    Nanofillers, by virtue of their minute size, when incorporated inside a matrix, have the capability to enhance the physical parameters of the complex matrix. Graphene, the wonder material of the twenty-first century, has established itself in the field of nanofillers. However, it still has yet to find its way into the mining industry. This review paper focuses on a novel way of attaining sustainability in mining methodology using graphene as a nanofiller. The implementations can be subdivided into three categories based on their impact—economic, environment, and safety. To achieve economic welfare in mine methodology; Graphene is used to enhance the productivity of machinery. Electric-Heavy Earth Moving Machinery using LiFePO4/Graphene hybrid cathode battery is not only an ideal replacement to fossil-powered vehicles considering the contribution of environmental strain but also a more-efficient model than Electric-Heavy Earth Moving Machinery using conventional Lithium Ion Phosphate Battery batteries. Heavy Earth Moving Machinery having tires of Styrene-Butadiene Rubber/Graphene composite would have better efficacy and longer life cycle than the conventional ones. Graphene derivative Magnetic Graphene Oxide is used to achieve environmental welfare by its implication as an additive in the effluent treatment plant for its capability of removing heavy metal ions and negative-strain bacteria from the mine water. To improve the safety standards of the mine workers, graphene and its derivatives have environmental implications to constitute a safer surrounding concerning precarious situations due to the unpredictable behavior of geomaterials. Graphene can assist in constituting a more economical and reliable slope model as incorporating graphene induces restructuration and improvement in strength parameters. This enables a miner to extract more minerals in tranquility from the resources as there is an increase in compaction and shear strength. A combination of a graphene sheet and auxetic graphene foam can be placed over the blast holes to not only restrict the trajectory of the fly rocks but also attenuate some part of the explosive energy. The objective of this coagulation is to upgrade the traditional practice by replacing the conventional products, and the effect is observed in the form of achieving sustainability in the mine.
  • 3.

    Carbon nano-materials (CNMs) derived from biomass for energy storage applications: a review

    Rajeshkumar L. , Ramesh M. , Bhuvaneswari V. and 1 other persons | 2023, 33(3) | pp.661~690 | number of Cited : 0
    In today’s world, carbon-based materials research is much wider wherein, it requires a lot of processing techniques to manufacture or synthesize. Moreover, the processing methods through which the carbon-based materials are derived from synthetic sources are of high cost. Processing of such hierarchical porous carbon materials (PCMs) was slightly complex and only very few methods render carbon nano-materials (CNMs) with high specific surface area. Once it is processed, which paves a path to versatile applications. CNMs derived from biological sources are widespread and their application spectrum is also very wide. This review focuses on biomass-derived CNMs from various plant sources for its versatile applications. The major thrust areas of energy storage include batteries, super-capacitors, and fuel cells which are described in this article. Meanwhile, the challenges faced during the processing of biomass-derived CNMs and their future prospects are also discussed comprehensively.
  • 4.

    MnO2/graphene supported on Ni foam: an advanced electrode for electrochemical detection of Pb(II)

    Liu Rui , Zhang Chao-Jun , Han Xue and 4 other persons | 2023, 33(3) | pp.691~698 | number of Cited : 0
    Graphene-derived materials are an excellent electrode for electrochemical detection of heavy metals. In this study, a MnO2/graphene supported on Ni foam electrode was prepared via ultrasonic impregnation and electrochemical deposition. The resulting electrode was used to detect Pb(II) in the aquatic environment. The graphene and MnO2 deposited on the Ni foam not only improved active surface area, but also promoted the electron transfer. The electrochemical performance towards Pb(II) was evaluated by cyclic voltammetry (CV) and square wave anodic stripping voltammetry (SWASV). The prepared electrode exhibited lower limit of detection (LOD, 0.2 μM (S/N = 3)) and good sensitivity (59.9 μAμM−1) for Pb(II) detection. Moreover, the prepared electrodes showed good stability and reproducibility. This excellent performance can be attributed to the strong adhesion force between graphene and MnO2, which provides compact structures for the enhancement of the mechanical stability. Thus, these combined results provide some technical considerations and scientific insights for the detection of heavy metal ions using composite electrodes.
  • 5.

    Salt-activated phenolic resin/PAN-derived core-sheath nanostructured carbon nanofiber composites for capacitive energy storage

    Lei Danyun , Li Xiang-Dan , Ma Min-Jung and 3 other persons | 2023, 33(3) | pp.699~711 | number of Cited : 0
    In this study, we have fabricated the phenolic resin (PR)/polyacrylonitrile (PAN) blend-derived core-sheath nanostructured carbon nanofibers (CNFs) via one-pot solution electrospinning. The obtained core-sheath nanostructured carbon nanofibers were further treated by mixed salt activation process to develop the activated porous CNFs (CNF-A). Compared to pure PAN-based CNFs, the activated PR/PAN blend with PR 20% (CNF28-A)-derived core-sheath nanostructured CNFs showed enhanced specific capacitance of ~ 223 F g−1 under a three-electrode configuration. Besides, the assembled symmetric CNF28-A//CNF28-A device possessed a specific capacitance of 76.7 F g−1 at a current density of 1 A g−1 and exhibited good stability of 111% after 5,000 galvanostatic charge/discharge (GCD) cycles, which verifies the outstanding long-term cycle stability of the device. Moreover, the fabricated supercapacitor device delivered an energy density of 8.63 Wh kg−1 at a power density of 450 W kg−1.
  • 6.

    Analysis of spinnable mesophase pitch in terms of lyotropic liquid crystalline solution

    Mashio Takashi , Tomaru Taisei , Shimanoe Hiroki and 5 other persons | 2023, 33(3) | pp.713~726 | number of Cited : 0
    Mesophase pitch is a unique graphitizable material that has been used as an important precursor for highly graphitic carbon materials. In the current study, we propose to consider a spinnable mesophase pitch as a lyotropic liquid crystalline solution composed of solvent components and liquid crystalline components, so-called mesogen or mesogenic components. Among mesophase pitches, the supermesophase pitch is defined as a mesohpase pitch with 100% anisotropy, and can only be observed in pitches with a proportion of mesogenic components exceeding the threshold concentration (TC). We also examined the critical limit of AR synthetic pitch and 5 experimental spinnable mesophase pitches (SMPs). Then, we examined the effect of the solvent component on the minimum required amount of mesogenic component using a selected solvent component instead of their own solvent components. AR pitch showed 100% anisotropy with the least amount of its mesogenic component, THF insoluble components, of 60 wt.%. The solvent component, THF soluble components, extracted from AR-pitch, which has a molecular weight pattern similar to that of the original material but more amount of naphthenic alkyl chains, showed better solvent functionality than those of other THF solubles (THFSs) from other as-prepared spinnable mesophase pitches. This is why a lower amount of AR THFS can produce a supermesophase pitch when combined with the THFI (mesogenic components) of other experimental mesophase pitches. As a result of the current analysis, we define the mesogens as molecules that not only readily stack, but also maintain stacking structures in a fused state in the solution. The solvent component, on the other hand, is defined as molecules with a structure that readily decomposes in a fused state in the solution.
  • 7.

    Enhanced CO2 capture by cupuassu shell-derived activated carbon with high microporous volume

    Cruz Orlando F. , Campello-Gómez Ignacio , Casco Mirian E. and 5 other persons | 2023, 33(3) | pp.727~735 | number of Cited : 0
    Here, we report the preparation of microporous-activated carbons from a Brazilian natural lignocellulosic agricultural waste, cupuassu shell, by pyrolysis at 500 ºC and KOH activation under different experimental conditions and their subsequent application as adsorbent for CO2 capture. The effect of the KOH:precursor ratio (wt/wt%) and the activation temperature on the porous texture of activated carbons have been studied. The values of specific surface area ranged from 1132 to 2486 m2/g, and the overall micropore volume ranged from 0.73 to 1.02 cm3/g. Carbons activated with 2:1 ratio of KOH and activation temperature of 700 ºC presented a CO2 adsorption at 1 bar of 7.8 and 4.4 mmol/g at 0 °C and 25 ºC, respectively. The isosteric heat of adsorption, Qst , was calculated for all samples by applying the Clausius–Clapeyron approach to CO2 adsorption isotherms at both temperatures. The values of CO2 adsorption capacities are among the highest reported in the literature, especially for activated carbons produced from biomass.
  • 8.

    Inorganic nanocrystal-carbon composite derived from cross-linked gallic acid derivative of polyphosphazenes for the efficient oxygen evolution reaction

    Ali Zahid , Mushtaq M. Asim , Abbas Yasir and 2 other persons | 2023, 33(3) | pp.737~749 | number of Cited : 0
    The development of heteroatoms doped inorganic nanocrystal-carbon composites (INCCs) has attained a great focus for energy applications (energy production and energy storage). A precise approach to fabricate the INCCs with homogenous distribution of the heteroatoms with an appropriate distribution of metal atoms remains a challenge for material scientists. Herein, we proposed a facile two-step route to synthesize INCC with doping of metal (α-Fe2O3) and non-metals (N, P, O) using hydrogel formed by treating hexachlorocyclotriphosphazene (HCCP) and 3, 4, 5-trihydroxy benzoic acid (Gallic acid). Metal oxide was doped using an extrinsic doping approach by varying its content and non-metallic doping by an intrinsic doping approach. We have fabricated four different samples (INCC-0.5%, INCC-1.0%, INCC-1.5%, and INCC-2.0%), which exhibit the uniform distribution of the N, P, O, and α-Fe2O3 in the carbon architecture. These composite materials were applied as anode material in water oxidation catalysis (WOC); INCC-1.5% electro-catalyst confirmed by cyclic voltammetry (CV) with a noticeable catholic peak 0.85 V vs RHE and maximal current density 1.5−2. It also delivers better methanol tolerance and elongated stability than RuO2; this superior performance was attributed due to the homogenous distribution of the α-Fe2O3 causing in promotion of adsorption of O2 initially and a greater surface area of 1352.8 m2/g with hierarchical pore size distribution resulting higher rate of ion transportation and mass-flux.
  • 9.

    Submicron graphite platelet-incorporated PVDF composite: an efficient body motion-based energy harvester for flexible electronics

    Kar Epsita , Bose Navonil , Das Sukhen | 2023, 33(3) | pp.751~760 | number of Cited : 0
    The fast expanding field of wearable technology requires light-weight, low-cost, scalable, flexible and efficient energy harvesters as a source of uninterrupted green power. This work reports fabrication of sub-micron graphite platelet/PVDF composite film-based flexible piezoelectric energy harvester (PGEH) for scavenging the wasted mechanical energy associated with human body motion. The addition of graphite platelet leads to the enhancement of electroactive β phase in PVDF; consequently, the piezoelectric and dielectric properties of the composite are enhanced. 0.5 wt% filler-loaded composite has 96% β phase fraction and dielectric constant 32 at 100 Hz (tanδ = 0.18).The PGEH produces open circuit voltage of 40 V and instantaneous power density of 3.35 mW cm−3 with energy conversion efficiency of 22.5% under periodic finger tapping. It can generate fair electrical output under gentle heel (0.8 V) and toe movements (1.2 V). A PGEH is directly employed for powering 50 commercial LEDs and quick charging of a 2.2-µF capacitor upto 19.2 V. The device is also employed as self-powered dynamic pressure sensor which shows high sensitivity (0.9 VkPa−1) with fast response time (1 ms). Therefore, this durable, flexible, efficient PGEH can have promising applications in wearable electronics as a green power source cum self-powered mechanosensor.
  • 10.

    One-shot synthesis of a nickel oxide/carbon composite electrocatalyst for a sensor capable of electrochemically detecting the antibiotic chloramphenicol in real samples

    Zoubir Jallal , Radaa Chaimae , Bakas Idriss and 3 other persons | 2023, 33(3) | pp.761~780 | number of Cited : 0
    In this study platform, electrocatalytic detection of the antibiotic chloramphenicol (CAP) in phosphate buffer (pH 7) was easily achieved using a carbon paste electrode modified with NiO nanoparticles (note NiO-CPE). The peak reduction potential of chloramphenicol on the modified electrode is at (− 0.60 V/NiO-CPE vs. Ag/AgCl), its electrochemical behavior is completely irreversible, and controlled by adsorption phenomena. An excellent electrocatalytic activity has been demonstrated by the modified elaborated electrode towards the NO2 attracting group on the side chain of chloramphenicol. The structure and chemical composition of the NiO-CPE sensor were analyzed by SEM, and the X-ray diffraction results indicated that nickel oxide microcrystals were formed on the carbon sheets. The electrochemical characteristics of the NiO-CPE sensor were examined by cyclic voltammetry and electrochemical impedance spectroscopy in comparison with the unmodified carbon. Since the DPV technique allows plotting the linearity curve between the electrocatalytic current intensity of the Chloramphenicol peak and their concentration, the proposed sensor showed a remarkable detection limit of 1.08 × 10–8 mol/L M (S/N = 3) and a wide determination range from 100 to 0.1 µM for Chloramphenicol. The developed sensor was successfully applied in the detection of Chloramphenicol in real samples.
  • 11.

    Polyaniline-modified graphitic carbon nitride as electrode materials for high-performance supercapacitors

    Qin Xin , Wan Jianbo , Zhang Qi and 3 other persons | 2023, 33(3) | pp.781~790 | number of Cited : 0
    Graphitic carbon nitride (g-C3N4) has attracted extensive attention in energy storage due to its suitable and tunable bandgap, high chemical/thermal stability, earth abundance and environmental friendliness. However, its conductivity should be improved to work as the electrode materials in supercapacitors. In this report, we have prepared a two-dimensional composite (CN-PANI) based on g-C3N4 and polyaniline (PANI) by in-situ polymerization, which can be efficiently applied as electrode material for supercapacitors. The introduction of PANI can increase the conductivity of the electrode, and the porous structure of g-C3N4 can provide enough channels for the transport of electrolyte ions and improve the electrode stability. As a result, the obtained CN-PANI demonstrates excellent specific capacitance (234.0 F g−1 at 5 mV/s), good rate performance and high cycling stability (86.2% after 10,000 cycles at 50 mV/s), showing great potential for high-rate supercapacitors.
  • 12.

    Facile synthesis of interconnected layered porous carbon framework for high-performance supercapacitors

    Murugan Nagaraj , Thangarasu Sadhasivam , Seo Sol Bin and 4 other persons | 2023, 33(3) | pp.791~802 | number of Cited : 0
    Biomass-derived porous carbon is an excellent scientific and technologically interesting material for supercapacitor applications. In this study, we developed biomass-derived nitrogen-doped porous carbon nanosheets (BDPCNS) from cedar cone biomass using a simple KOH activation and pyrolysis method. The BDPCNS was effectively modified at different temperatures of 600 °C, 700 °C, and 800 ℃ under similar conditions. The as-prepared BDPCNS-700 electrode exhibited a high BET surface area of 2883 m2 g−1 and a total pore volume of 1.26 cm3 g−1. Additionally, BDPCNS-700 had the highest electrical conductivity (11.03 cm−1) and highest N-doped content among the different electrode materials. The BDPCNS-700 electrode attained a specific capacitance of 290 F g−1 at a current density of 1 A g−1 in a 3 M KOH electrolyte and an excellent long-term electrochemical cycling stability of 93.4% over 1000 cycles. Moreover, the BDPCNS-700 electrode had an excellent energy density (40.27 Wh kg−1) vs power density (208.19 W kg−1). These findings indicate that BDPCNS with large surface areas are promising electrode materials for supercapacitors and energy storage systems.
  • 13.

    Polymeric carbon nitrides produced from different gaseous conditions and their photocatalytic performance for degrading organic pollutants

    Jang Dawoon , Jeon Seokhyeon , Shin Eun Young and 1 other persons | 2023, 33(3) | pp.803~809 | number of Cited : 0
    Polymeric carbon nitride (p-C3N4) is a promising platform as a metal-free photo-catalyst for various reactions. The p-C3N4 can be produced by thermal poly-condensation of organic precursors. Their morphological and chemical structures depend on reaction conditions during the poly-condensation. In this study, two p-C3N4 materials are produced by heat treatment of urea under different gaseous conditions with air (urea-derived carbon nitride under air, UCN-A) and N2 (UCN-N), respectively. UCN-A and UCN-N samples are mesoporous materials and show excellent photocatalytic activities for degrading rhodamine B, an organic pollutant, under the irradiation of visible light. The UCN-A shows the better photocatalytic activity than UCN-N. Various characterizations reveal that more porous structures and larger surface areas of UCN-A are reasons for the better photocatalytic performance.
  • 14.

    Dual-templating-derived porous carbons for low-pressure CO2 capture

    Bari Gazi A. K. M. Rafiqul , Kang Hui-Ju , Lee Tae-Gyu and 6 other persons | 2023, 33(3) | pp.811~822 | number of Cited : 0
    Porous carbons are considered promising for CO2 capture due to their high-pressure capture performance, high chemical/thermal stability, and low humidity sensitivity. But, their low-pressure capture performance, selectivity toward CO2 over N2, and adsorption kinetics need further improvement for practical applications. Herein, we report a novel dual-templating strategy based on molten salts (LiBr/KBr) and hydrogen-bonded triazine molecules (melamine–cyanuric acid complex, MCA) to prepare high-performance porous carbon adsorbents for low-pressure CO2. The comprehensive investigations of pore structure, microstructure, and chemical structure, as well as their correlation with CO2 capture performance, reveal that the dual template plays the role of porogen for multi-hierarchical porous structure based on supermicro-/micro-/meso-/macro-pores and reactant for high N/O insertion into the carbon framework. Furthermore, they exert a synergistic but independent effect on the carbonization procedure of glucose, avoiding the counter-balance between porous structure and hetero-atom insertion. This enables the preferred formation of pyrrolic N/carboxylic acid functional groups and super-micropores of ~ 0.8 nm, while retaining the micro-/meso-/macro-pores (> 1 nm) more than 60% of the total pore volume. As a result, the dual-templated porous carbon adsorbent (MG-Br-600) simultaneously achieves a high CO2 capture capacity of 3.95 mmol g−1 at 850 Torr and 0 °C, a CO2/N2 (15:85) selectivity factor of 31 at 0 °C, and a high intra-particle diffusivity of 0.23 mmol g−1 min−0.5 without performance degradation over repeated use. With the molecular scale structure tunability and the large-scale production capability, the dual-templating strategy will offer versatile tools for designing high-performance carbon-based adsorbents for CO2 capture.
  • 15.

    An hydrogen adsorption study on graphene-based surfaces with core–shell type catalysts

    Vallejo Emmanuel | 2023, 33(3) | pp.823~832 | number of Cited : 0
    An hydrogen adsorption study on graphene-based surfaces consisting of nitrogen-doped graphene and core–shell type catalysts of initially Pd13 , Pt13 , PdPt12 and PtPd12 core–shells, is presented in this work. Density functional theory results indicate correlation between charge transfer and structural properties, hydrogen adsorption energies, magnetic behavior and electronic properties. Reduction of hydrogen, together with higher values of charge transfer was observed for high hydrogen dissociation, compared to the case of non-hydrogen dissociation. In some cases, these values may be almost an order of magnitude larger than that of non-hydrogen dissociation. Hydrogen dissociation is also related to oxidation of the surface and correlates with a non-core shell-type structure, high adsorption energies and low magnetic moments, in general. Besides, core shell-type structure dramatically changes the magnetic and electronic properties of charge transfer. The results obtained in this work may provide important information for storing hydrogen.
  • 16.

    Mechanical properties evaluation on hybrid AA6026 composites added with nanoclay and carbon fibers

    Azhagiri Pon , Senthilkumar N. , Palanikumar K. and 1 other persons | 2023, 33(3) | pp.833~846 | number of Cited : 0
    With a strive to develop light-weight material for automotive and aerospace applications, aluminum-based hybrid nano-composites (AHNCs) were manufactured utilizing the compocasting approach in this study. Chopped carbon fibers (CFs) are reinforced along with different weight fractions of nanoclay (1–5%) in the matrix of AA6026 forming AHNCs. The AHNCs specimens were examined by microstructural analysis, mechanical characterization, fatigue, and corrosion strength as per ASTM guidelines. Electroless plating method is adopted for coating CFs with copper to improve the wettability with matrix. SEM pictures of manufactured composites reveal thin inter-dendritic aluminum grains with precipitate particle of eutectic at intergranular junctions, as well as nanoclay particles that have precipitated in the matrix. Tensile strength (TS) rises with inclusion of nanoclay up to a maximum of 212.46 MPa for 3% nanoclay reinforcement, after which the TS is reduced due to non-homogeneity in distribution, agglomeration and de-bonding of nanoparticles. Similarly, micro-hardness increases with addition of 3% nanoclay after which it decreases. Higher energy absorption was achieved with 3% nanoclay reinforced hybrid and a significant improvement in flexural strength was obtained. With addition of both CFs and nanoclay, the fatigue strength of the hybrid composite tends to increase due to flexible CFs and high surface area nanoclays which strengthen the grain boundaries until 3% addition. Addition of nanoclay lowers the corrosion rate with nanoclays filling the crevices and voids in the matrix.
  • 17.

    Performance study of g-C3N4/carbon black/BiOBr@Ti3C2/MoS2 photocatalytic fuel cell for the synergistic degradation of different types of pollutants

    Guo Huilin , Yu Tingting , Zhao Lei and 12 other persons | 2023, 33(3) | pp.847~862 | number of Cited : 0
    In this study, a bipolar visible light responsive photocatalytic fuel cell (PFC) was constructed by loading a Z-scheme g-C3N4/carbon black/BiOBr and a Ti3C2/MoS2 Schottky heterojunction on the carbon brush to prepare the photoanode and photocathode, respectively. It greatly improved the electron transfer and achieved efficient degradation of organic pollutants such as antibiotics and dyes simultaneously in two chambers of the PFC system. The Z-scheme g-C3N4/carbon black/BiOBr formed by adding highly conductive carbon black to g-C3N4/BiOBr not only effectively separates the photogenerated carriers, but also simultaneously retains the high reduction of the conduction band of g-C3N4 and the high oxidation of the valence band of BiOBr, improving the photocatalytic performance. The exceptional performance of Ti3C2/MoS2 Schottky heterojunction originated from the superior electrical conductivity of Ti3C2 MXene, which facilitated the separation of photogenerated electron–hole pairs. Meanwhile, the synergistic effect of the two photoelectrodes further improved the photocatalytic performance of the PFC system, with degradation rates of 90.9% and 99.9% for 50 mg L−1 tetracycline hydrochloride (TCH) and 50 mg L−1 rhodamine-B (RhB), respectively, within 180 min. In addition, it was found that the PFC also exhibited excellent pollutant degradation rates under dark conditions (79.7%, TCH and 97.9%, RhB). This novel pollutant degradation system is expected to provide a new idea for efficient degradation of multiple pollutant simultaneously even in the dark.
  • 18.

    A method to characterize ink performance by line resistance measurement through modeling for direct pen writing

    Dong Maolin , Tian Yufei , Wang Xin and 1 other persons | 2023, 33(3) | pp.863~872 | number of Cited : 0
    The rational evaluation of carbon-based conductive ink performance is critical to both industrial production and applications. Herein, a model to evaluate writing performance of conductive ink by line resistance was proposed by investigating possible relations among different parameters and establishing relevant model to estimate ink writing performance. Bulk conductive inks were prepared and characterized to provide samples for model. To improve the precision of model, the impact of external factors including writing speed and angle was studied. Nonlinear regression and back propagation artificial neural network were employed to estimate line resistance, and cross check validation was conducted to prove robustness and precision of model. Most importantly, the investigation will open up a new path for the exploration of other carbon-based handwritten electronic devices.
  • 19.

    Constructing all-in-one graphene-based supercapacitors for electrochemical energy storage via interface integration strategy

    Zhu Yucan , Peng Long , Chen Song and 7 other persons | 2023, 33(3) | pp.873~882 | number of Cited : 0
    With the rapid development of flexible wearable electronic products, flexible all graphene-based supercapacitors (FGSCs) with reduced graphene oxide rGO//graphene oxide (GO)//rGO structure have attracted substantial attention due to their unique structures and energy storage mechanism. However, restricted by design idea and preparation technology, improvement of capacitance performance for the FGSCs is not obvious recently. Herein, we demonstrate that an interface integration strategy of constructing the high-performance FGSCs with compact structure. Hydroquinone (HQ)-modified rGO (HQ-rGO) films (electrode materials) and sulfuric acid-intercalated GO films (electrolyte/separator) are assembled into the FGSCs utilizing hydrogen bonding and capillary contractility. The HQ further improves the electrochemical capacitance of electrode materials. The synergistic effect of the hydrogen bonding and capillary contractility guarantees compact and stable structure of the device. The resulting FGSCs exhibit an excellent areal capacitance of 804.6 mF cm−2 (@2 mA cm−2) and 441 mF cm−2 (@30 mA cm−2), and their highest energy and power densities can achieve 109.5 μWh cm−2 and 21,060 μW cm−2, respectively. These performances are superior to other all-in-one graphene-based SCs reported. Therefore, the construction technology of the FGSCs is a promising for developing all graphene-based SCs with high-performance.
  • 20.

    Evaluation of adsorption characteristics of new-generation CNT-based adsorbents: characterization, modeling, mechanism, and equilibrium study

    Kocaman Suheyla | 2023, 33(3) | pp.883~897 | number of Cited : 0
    In this study, superior carbon nanotubes (CNT) were chemically modified with itaconic acid (IA) and a polyaniline (PANI) composite was formed and used to remove methylene blue (MB) dye from an aqueous solution. The capacity of CNTs modified with IA (IA/CNT) and composited with PANI (PANI/CNT) to remove MB dye from an aqueous solution was compared and investigated. The effects of parameters such as pH (3–10), adsorbent dose (0.8–8 g/L), initial dye concentration (10–100 mg/L), and temperature (25–55 °C) on MB adsorption were investigated. IA/CNT and PANI/CNT adsorbents were characterized by analyzes such as Fourier Transform Infrared Spectroscopy (FT-IR), Field Emission Scanning Electron Microscopy (FE-SEM), transmission electron microscope (TEM), and Brunauer, Emmett and Teller (BET). It was determined that the isotherm data fit the Langmuir isotherm model. The maximum adsorption capacity (qmax) of PANI/CNT and IA/CNT calculated according to this model (at 25 °C) was 12.78 and 32.78 mg g−1, respectively. Thermodynamic analysis results showed that the adsorption was exothermic, feasible, and spontaneous. It can be said that the possible mechanism of MB on PANI/CNT and IA/CNT adsorbents occurs with the participation of π–π interaction, electrostatic attraction and hydrogen bonding.
  • 21.

    Preparation of high surface area carborundum-supported cobalt catalysts for hydrogen production by ammonia decomposition

    Li Guoru , Tan Yuhang , Lei Zhiping and 2 other persons | 2023, 33(3) | pp.899~908 | number of Cited : 0
    Ammonia is a potential fuel for producing and storing hydrogen, but its usage is constrained by the high cost of the noble metal catalysts to decompose NH3. Utilizing non-precious catalysts to decompose ammonia increases its potential for hydrogen production. In this study, carborundum (SiC)-supported cobalt catalysts were prepared by impregnating Co3O4 nanoparticles (NPs) on SiC support. The catalysts were characterized by high-resolution transmission electron microscope, X-ray photoelectron spectroscopy, temperature programmed reduction, etc. The results show that the large specific surface area of SiC can introduce highly distributed Co3O4 NPs onto the surface. The amount of Co in the catalysts has a significant effect on the catalyst structure, particle size and catalytic performances. Due to the interaction of cobalt species with SiC, the 25Co/SiC catalyst provided the optimal ammonia conversion of 73.2% with a space velocity of 30,000 mL gcat−1 h−1 at 550 °C, corresponding to the hydrogen production rate of 24.6 mmol H2 gcat−1 min−1. This research presents an opportunity to develop highly active and cost-effective catalysts for hydrogen production via NH3 decomposition.
  • 22.

    Optimization for testing conditions of inverse gas chromatography and surface energies of various carbon fiber bundles

    Liu Yuwei , Gu Yizhuo , Wang Shaokai and 1 other persons | 2023, 33(3) | pp.909~920 | number of Cited : 0
    Surface free energy is an important parameter in surface and interface properties of fiber reinforced polymer composite. The BET (Brunauer, Emmett, and Teller) surface area and surface energy of the sample can be obtained by Inverse Gas Chromatography (IGC) based on the adsorption principle. In this paper, surface energy of carbon fiber bundle was tested by means of IGC under different conditions to find reliable test parameters. The main parameters involved include length, mass, and packing density of sample, target fractional surface coverage, flow rate, and maximum elution time. It is demonstrated that IGC has the advantages of simple sample preparation, stable test data, high automation, and high sensitivity for carbon fiber. Among all test conditions, packing density and flow rate have the greatest influences on the experimental results. The optimized test parameters are suitable for various kinds of carbon fiber bundles, including polyacrylonitrile-based and pitch-based carbon fibers with different tensile properties and tow sizes. Moreover, IGC can acutely characterize the surface properties of carbon fibers after carbon nanotube modification and heat treatment, which are hard to carry out using contact angle method.
  • 23.

    Statistical analysis of the synthesis of carbon nanotubes using wet-impregnated catalysts for improved robustness

    Song Hyeongyun , Kim Dong Hwan , Park Cheol Woo and 3 other persons | 2023, 33(3) | pp.921~929 | number of Cited : 0
    Mass production of high-quality carbon nanotubes (CNTs) remains a challenge, requiring the development of new wet-impregnated catalyst suitable for the catalytic chemical vapor deposition (CCVD) of CNTs in a fluidized bed reactor. For the successful development of a new catalyst, a highly robust system to synthesize CNTs must be established. Here, we systematically investigated the robustness of CNT synthesis by CCVD using a wet-impregnated catalyst. We statistically tested four factors that could potentially affect the robustness of CNT synthesis system, focusing on carbon yield and IG/ID. First, we tested the effect of vacuum baking before CNT growth. F test and CV equality test concluded that vacuum baking recipe did not significantly reduce the variability of the CNT synthesis. Second, we tested the batch-to-batch variation of catalysts. The results of t test and one-way analysis of variance indicate that there is significant difference in carbon yield and IG/ID among catalysts from different batches. Third, we confirmed that there is spatial non-uniformity of wet-impregnated catalysts within a batch when they are produced in large scale. Finally, we developed a multi-step heating recipe to mitigate the temperature overshooting during the CNT synthesis. The multi-step recipe increased the mean of carbon yield, but did not influence the variability of CNT synthesis. We believe that our research can contribute to the establishment of a robust CNT synthesis system and development of new wet-impregnated catalysts.
  • 24.

    Revelation of fluorophore impurities among biocompatible blue fluorescent carbon nanodots derived from Hemigraphis alternata plant and bioimaging

    Manisha H. , Velayudham M. , Kumara B. N. and 3 other persons | 2023, 33(3) | pp.931~946 | number of Cited : 0
    The rapid synthesis techniques and interesting multidisciplinary applications make carbon nanodots (CNDs) stand out from semiconductor quantum dots. Moreover, CNDs derived from green precursors have gained more importance beyond chemically derived CNDs due to sustainable synthesis opportunities. However, the presence of molecular impurities or intermediates or fluorophores was neglected during the entire process. Herein, we illustrate the sustainable synthesis of CNDs from Hemigraphis alternata plant leaves with extended carbonization procedure (3 and 9 min) along with simultaneous ethylene glycol and diethyl ether solvent treatment method for the successful removal of interfering fluorophores. To unravel the distinction between purified CNDs (P-CNDs) and organic fluorescent carbon nanostructures (org-FCNs), we carried out photophysical, structural, and morphological studies. A quantum yield (QY) of 69 and 42% was observed for crude org-FCNs, and crude P-CNDs; however after purification, QY of 1% and absence of one component from the fluorescent decays curve suggest the removal of fluorophores. Further, HR-TEM and DLS studies showed the quasi-spherical amorphous particles having < 10 nm particle size for P-CNDs. Besides, in vitro biocompatibility investigation and cellular uptake assay (1–100 μg/mL) against the MDA-MB 468 cell lines proves the ≥ 95% cell viability and good internalization for both org-FCNs and P-CNDs. Hence, our study shows the presence of fluorophore impurities in plant-derived CNDs, the removal and resemblance in biocompatibility properties. Hence, this information can be considered during the synthesis and isolation of CNDs.
  • 25.

    Relationship between the 13C chemical shifts of adsorbed mesityl oxide and acid strength of solid acid catalysts

    Liu Fei , Liu Fengqing , Qin Qin and 2 other persons | 2023, 33(3) | pp.947~956 | number of Cited : 0
    The carbon-containing molecule can be used as an NMR probe to explore the acidic and structural features of various catalytic materials. Thereinto, although mesityl oxide (MO) has been extensively employed to determine the acidity of solution and ionic liquid systems, could it be utilized to characterize the acidic properties of solid acid catalysts? In this work, on the basis of a series of isolated Brønsted and Lewis acid models with varied acid strengths, the adsorption configurations and corresponding 13C chemical shifts of adsorbed MO molecules have been comprehensively studied by means of a theoretical investigation approach. Among them, both the 13C chemical shift difference between β and α carbon atoms (Δδ), and the 13C chemical shift of β carbon atoms (δ13Cβ) in adsorbed MO molecules were explicitly demonstrated to be closely related to the intrinsic acid strength of Brønsted acid sites. These correlations could be utilized to quantitatively scale the Brønsted acid strength of solid acid catalysts. Besides, a moderate relationship was theoretically derived for the relevant 13C NMR parameters and intrinsic Lewis acid strength.