Method of Human Detection using Edge Symmetry and Feature Vector
[journal]
이왕희
/ 2009
/
Detecting Nighttime Pedestrians for PDS Using Camera in Visible Spectrum
/ 한국산학기술학회논문지
/ 한국산학기술학회
10
(9)
: 2280~2289
[journal] C. Curio / 2000 / Walking Pedestrian Recognition / IEEE Trans. on Intelligent Transportation Systems 1 (3) : 155~163
[journal] D. M. Gavrila / 2007 / Multi-cue Pedestrian Detection and Tracking fromaMoving Vehicle / International Journal of Computer Vision 73 (1) : 41~59
[confproc] G. Grubb / 2004 / 3D vision sensing for improved pedestrian safety / Proc. of IEEE Intelligent Vehicles Symposium : 19~24
[confproc] H. Elzein / 2003 / Amotion and shape based pedestrian detection algorithm / Proc. of IEEE Intelligent Vehicle Symposium : 500~504
[journal] F. Xu / 2005 / Pedestrian detection and tracking with night vision / IEEE Trans. on Intelligent Transportation Systems 6 (1) : 63~71
[journal] U. Franke / 1998 / Autonomous driving goes downtown / IEEE Intelligent Systems and their Applications 13 (6) : 40~48
[report] G. Ma / 2008 / A Symmetry Search and Filtering Algorithm for Vision Based Pedestrian Detection System / World Congress
[confproc] Q. M. Tian / 2004 / Pedestrian dete ction in nighttime driving / Pro. of the Third International Conference on Image and Graphics : 116~119
[journal] M. Enzweiler / 2009 / Monocular Pedest rian Detection: Survey and Experiments / IEEE Transactions on Pattern Analysis and Machine Intelligence 31 (12) : 2179~2195
[journal] T. Tsuji / 2002 / Development of night-vision system / IEEE Transactions on Intelligent Transportation Systems 3 (3) : 203~209
[confproc] H. Nanda / 2002 / Probabilistic template bas ed pedestrian detection in infrared videos / IEEE Intelligent Vehicle Symposium : 15~20
[confproc] M. Oren / 1997 / Pedestrian detection using wavelet templates / Proc. of IEEE computer Society Conference on Computer Vision and Pattern Recognition : 193~199
[journal] C. Papageorgiou / 2000 / A trainable system for object detection / International Journal of Computer Vision 38 (1) : 15~33
[confproc] L. Zhao / 1999 / Stereo and neural netwo rk-based pedestrian detection / IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems : 298~303
[confproc] P. Viola / 2003 / Detecting pede strians using patterns of motion and appearance / Proc. Ninth IEEE International Conference on Computer Vision : 734~741
[confproc] N. Dalal / 2005 / Histograms of oriented gra dients for human detection / IEEE Computer Society Conference on Computer Vision and Pattern Recognition : 886~893
[journal] S. Paisitkriangkrai / 2008 / Fast Pedestrian Detection Using a Cascade of Boosted Covariance Features / IEEE Trans. on Circuits and Systems for Video Technology 18 (8) : 1140~1151
[journal]
이영학
/ 2010
/
Pedestrian Recognition using Adaboost Algorithm based on Cascade Method by Curvature and HOG
/ 정보과학회논문지 : 컴퓨팅의 실제 및 레터
/ 한국정보과학회
16
(6)
: 654~662
[journal]
홍용희
/ 2010
/
A Face Detection Method Based on Adaboost Algorithm using New Free Rectangle Feature
/ 한국컴퓨터정보학회논문지
/ 한국컴퓨터정보학회
15
(2)
: 55~64
[journal]
김형균
/ 2008
/
Real-time Face Detection System using YCbCr Information and AdaBoost Algorithm
/ 한국컴퓨터정보학회논문지
/ 한국컴퓨터정보학회
13
(5)
: 19~26
[web] / http://cbcl.mit.edu/software-datasets/PedestrianData.html / http://cbcl.mit.edu/software-datasets/PedestrianData.html
[web] / http://pascal.inrialpes.fr/data/human / http://pascal.inrialpes.fr/data/human
[confproc] M. A. Sotelo / 2006 / Pedestrian Detection using SVM and Multi-feature Combination / Proc. of the 2006. ITSC '06, IEEE Intelligence Trans : 103~108
KCI Citation (0)