A Comprehensive Performance Evaluation in Collaborative Filtering
[journal] J. Konstan / 1997 / GroupLens : Applying collaborative filtering to Usenet news / Communications of ACM 40 (3) : 77~87
[journal] M. Pazzani / 1999 / A Framework for Collaborative, Content-Based, and Demographic Filtering / Artificial Intelligence Review : 393~408
[confproc] B. Sarwar / 2001 / Item-based collaborative filtering recommendationalgorithm / Proc. of the 10th internationalconference on World Wide Web : 285~295
[confproc] A. Ferman / 2002 / Content-based Filtering and PersonalizationUsing Structural Metadata / Proc. of the 2ndACM/IEEE-CS Joint Conference on Digitallibraries : 393~393
[confproc] 문수복 / 2010 / What is Twitter, a Social Network or News Media? / Proceedings of the 19th International World Wide Web (WWW) Conference / Proceedings of the 19th International World Wide Web (WWW) Conference : 591~600
[confproc] H. Liu / 2005 / InterestMap : Harvesting Social Network Profiles for Recommendations / Proc. of the Beyond Personalization Workshop : 54~49
[confproc] M. O. Connor / 1999 / Clustering Items for Collaborative Filtering / Proc. of the ACM SIGIR Workshop on Recommender Systems
[confproc] C. Ding / 2004 / K-Means Clustering via Principal Component Analysis / Proc. of the 21th Int. Conf. on Machine Learning : 225~232
[confproc] P. Melville / 2002 / Content-Boosted Collaborative Filtering forImproved Recommendations / Proc. of theEighteenth National Conference on ArtificialIntelligence, Edmonton, Canada : 187~192
[confproc] J. L. Herlocker / 1999 / An Algorithmic Framework for Performing Collaborative Filtering / Proc. of 22nd Annual International ACM SIGIR Conference, Research and Development in Information Retrieval
[confproc] G. Groh / 2007 / Recommendations in Taste Related Domains : Collaborative filtering vs. Social filtering / Proc. of GROUP’07 : 127~136
[journal] M. Balabanovic / 1997 / Fab : Content-Based, Collaborative Recommendation / Communications of the ACM 40 (3) : 66~72
[journal] Y. Yang / 2005 / Interest-based Recommendation in Digital Library / Journal of Computer Science 1 (1) : 40~46
[journal] J. L. Herlocker / 2002 / An Empirical Analysis of Design Choices inNeighborhood-based Collaborative FilteringSystems / Information Retrieval 5 : 287~310
[journal] Z. Huang / 2004 / Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering / ACM Trans. Information Systems 22 (1) : 116~142
[confproc] S. Brin / 1995 / Near Neighbor Search in Large Metric Spaces / Proc. of the 21th International Conference on Very Large DataBases : 574~584
[journal] F. Zhang / 2010 / A Two-stage Recommendation Algorithm Based on K-means Clustering In Mobile E-commerce / Journal of Computational Information Systems 6 (10) : 3327~3334
[journal] S. Gong / 2010 / A Collaborative Filtering Recommendation Algorithm Based on User Clustering and Item Clustering / Journal of Software 5 (7)
[journal] J. Herlocker / Evaluating Collaborative Filtering Recommender Systems / ACM Transactions on Information Systems 22 (1) : 5~53
[confproc] T. Kim / 2008 / Improving Prediction Quality in Collaborative Filtering based on Clustering / Proc. of 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology : 704~710