[confproc]
A. Narayanan
/ 2008
/ Robust De-anonymization of Large Sparse Datasets
/ Proceedings of the 2008 IEEE Symposium on Security and Privacy Page
[journal]
김종선
/ 2017
/
Models for Privacy-preserving Data Publishing : A Survey
/ 정보과학회논문지
/ 한국정보과학회
44
(2)
: 195~207
[journal]
B.C.M. Fung
/ 2010
/ Privacy-preserving data publishing: A survey of recent developments
/ ACM Computing Surveys
42
(4)
[journal]
N. Mohammed
/ 2010
/ Centralized and distributed anonymization for high-dimensional healthcare data
/ ACM Transactions on Knowledge Discovery from Data
4
(4)
[journal]
L. Sweeney
/ 2002
/ k-anonymity: A model for protecting privacy
/ International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
10
(5)
: 557~570
[confproc]
K. LeFevre
/ 2005
/ Incognito: Efficient full domain k-anonymity
/ Proceedings of the ACM SIGMOD International Conference on Management of Data
[journal]
A. Machanavajjhala
/ 2007
/ l-diversity: Privacy beyond k-anonymity
/ ACM Transactions on Knowledge Discovery from Data
1
(1)
[confproc]
N. Li
/ 2007
/ t-closeness: Privacy beyond k-anonymity and l-diversity
/ Proceedings of the International Conference on Data Engineering
[journal]
S. Kim
/ 2017
/ Privacy-preserving data cub for electronic medical records: An experimental evaluation
/ International Journal of medical Informatics
[confproc]
J. Byun
/ 2007
/ Efficient k-Anonymization Using Clustering Technique
/ DASFAA 2007: Advances in Databases: Concepts, Systems and Applications
: 188~200
[web]
/ Health Insurance Review and Assessment Service in Korea
/ http://opendata.hira.or.kr