Rating Prediction by Evaluation Item through Sentiment Analysis of Restaurant Review
[book] R. A. Peterson / 2003 / Consumer Behavior / Prentice-Hall
[journal] Suman Basuroy / 2018 / How Critical are Critical Reviews? The Box Office Effects of Film Critics, Star Power, and Budgets / Journal of Marketing / SAGE Publications 67 (4) : 103~117 / 10.1509/jmkg.67.4.103.18692
[journal] Wenjing Duan / 2008 / Do online reviews matter? — An empirical investigation of panel data / Decision Support Systems / Elsevier BV 45 (4) : 1007~1016 / 10.1016/j.dss.2008.04.001
[journal]
안정국
/ 2015
/
Building a Korean Sentiment Lexicon Using Collective Intelligence
/ 지능정보연구
/ 한국지능정보시스템학회
21
(2)
: 49~67
[journal] Barbara Bickart / 2001 / Internet forums as influential sources of consumer information / Journal of Interactive Marketing / Elsevier BV 15 (3) : 31~40 / 10.1002/dir.1014
[journal]
송종석
/ 2011
/
Automatic Construction of Positive/Negative Feature-Predicate Dictionary for Polarity Classification of Product Reviews
/ 정보과학회논문지 : 소프트웨어 및 응용
/ 한국정보과학회
38
(3)
: 157~168
[journal]
유은지
/ 2013
/
Predicting the Direction of the Stock Index by Using a Domain-Specific Sentiment Dictionary
/ 지능정보연구
/ 한국지능정보시스템학회
19
(1)
: 95~110
[journal]
이상훈
/ 2016
/
Sentiment analysis on movie review through building modified sentiment dictionary by movie genre
/ 지능정보연구
/ 한국지능정보시스템학회
22
(2)
: 97~113
[journal]
정우영
/ 2018
/
Construction and Evaluation of a Sentiment Dictionary Using a Web Corpus Collected from Game Domain
/ 한국게임학회 논문지
/ 한국게임학회
18
(5)
: 113~122
[confproc] B. Pang / 2004 / A Sentiment Education : Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts / Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04) : 271~278
[journal] Rodrigo Moraes / 2013 / Document-level sentiment classification: An empirical comparison between SVM and ANN / Expert Systems with Applications / Elsevier BV 40 (2) : 621~633 / 10.1016/j.eswa.2012.07.059
[journal]
김미선
/ 2018
/
Sentiment Analysis of News Articles on Agricultural Product Using Convolutional Neural Network
/ 정보과학회 컴퓨팅의 실제 논문지
/ 한국정보과학회
24
(11)
: 623~627
/ https://doi.org/10.5626/KTCP.2018.24.11.623
[journal]
박호연
/ 2019
/
Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Model
/ 지능정보연구
/ 한국지능정보시스템학회
25
(4)
: 141~154
[journal]
현지연
/ 2019
/
How to improve the accuracy of recommendation systems: Combining ratings and review texts sentiment scores
/ 지능정보연구
/ 한국지능정보시스템학회
25
(1)
: 219~239
[confproc] Hyun Woong Cho / 2015 / The model for review rating prediction using review data / Proceeding of The Korea Society of IT Services Autumn Conference : 471~474
[confproc] Sang-Hyun Park / 2016 / Overall prediction of online review using Topic modeling and Neural network / Korea Intelligent Information Systems Society : 56~56
[journal]
김경민
/ 2014
/
Detection of Malicious Rate Evaluation and Prediction of True Rate in Movie Rating
/ 정보과학회 컴퓨팅의 실제 논문지
/ 한국정보과학회
20
(4)
: 213~218
[web] / TripAdvisor / http://www.tripadvisor.co.kr/
[journal]
박상민
/ 2018
/
KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon
/ 지능정보연구
/ 한국지능정보시스템학회
24
(4)
: 219~240
[journal] N.Lalithamani / 2014 / SENTENCE-LEVEL SENTIMENT POLARITY CALCULATION FOR CUSTOMER REVIEWS BY CONSIDERING COMPLEX SENTENTIAL STRUCTURES / International Journal of Research in Engineering and Technology / eSAT Publishing House 03 (03) : 433~438 / 10.15623/ijret.2014.0303081