Journal of The Korea Society of Computer and Information 2022 KCI Impact Factor : 0.69
A Study on Stock Trend Determination in Stock Trend Prediction
ABSTRACT
열림/닫힘 버튼KEYWORDS
열림/닫힘 버튼188 Viewed
34 Downloaded
KCI Citation Counts (1)
열림/닫힘 버튼[journal] H. S. Sim / 2019 / Is deep learning for image recognition applicable to stock market prediction? / Complexity 2019 : 1~10 / 10.1155/2019/4324878
[journal] Xiangzhou Zhang / 2014 / A causal feature selection algorithm for stock prediction modeling / Neurocomputing / Elsevier BV 142 : 48~59 / 10.1016/j.neucom.2014.01.057
[journal] Xi Zhang / 2018 / Improving stock market prediction via heterogeneous information fusion / Knowledge-Based Systems / Elsevier BV 143 : 236~247 / 10.1016/j.knosys.2017.12.025
[journal] Asil Oztekin / 2016 / A data analytic approach to forecasting daily stock returns in an emerging market / European Journal of Operational Research / Elsevier BV 253(3) : 697~710 / 10.1016/j.ejor.2016.02.056
[journal] Deepak Kumar / 2016 / Proximal support vector machine based hybrid prediction models for trend forecasting in financial markets / Journal of Computational Science / Elsevier BV 17 : 1~13 / 10.1016/j.jocs.2016.07.006
[confproc] Z. Lei / 2015 / Price trend prediction of stock market using outlier data mining algorithm / Proceedings of IEEE International Conference on Big Data and Cloud Computing : 93~98
[journal] Jing Zhang / 2018 / A novel data-driven stock price trend prediction system / Expert Systems with Applications / Elsevier BV 97 : 60~69 / 10.1016/j.eswa.2017.12.026
[journal] Wen-Chyuan Chiang / 2016 / An adaptive stock index trading decision support system / Expert Systems with Applications / Elsevier BV 59 : 195~207 / 10.1016/j.eswa.2016.04.025
[journal] Yingjun Chen / 2018 / Integrating principle component analysis and weighted support vector machine for stock trading signals prediction / Neurocomputing / Elsevier BV 321 : 381~402 / 10.1016/j.neucom.2018.08.077
[journal] Ehsan Hoseinzade / 2019 / CNNpred: CNN-based stock market prediction using a diverse set of variables / Expert Systems with Applications / Elsevier BV 129 : 273~285 / 10.1016/j.eswa.2019.03.029
[journal] Wen Long / 2019 / Deep learning-based feature engineering for stock price movement prediction / Knowledge-Based Systems / Elsevier BV 164 : 163~173 / 10.1016/j.knosys.2018.10.034
[confproc] R. Socher / 2012 / Convolutional-recursive deep learning for 3D object classification / Proceedings of International Conference on Neural Information Processing Systems : 656~664
[confproc] A. Graves / 2013 / Speech recognition with deep recurrent neural networks / Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing : 6645~6649
[confproc] D. Chicco / 2014 / Deep autoencoder neural networks for gene ontology annotation predictions / Proceedings of ACM Conference on Bioinformatics, COmputational Biology, and Health Informatics : 533~540
[journal] Andrew Sun / 2016 / Trade the tweet: Social media text mining and sparse matrix factorization for stock market prediction / International Review of Financial Analysis / Elsevier BV 48 : 272~281 / 10.1016/j.irfa.2016.10.009
[journal] Hongping Hu / 2018 / Predicting the direction of stock markets using optimized neural networks with Google Trends / Neurocomputing / Elsevier BV 285 : 188~195 / 10.1016/j.neucom.2018.01.038
[confproc] G. Park / 2010 / Stock price forecasting using semi-supervised learning / Proceedings of KORMS Conference : 110~116
[confproc] S. Ahn / 2010 / Stock prediction using news text mining and time series analysis / Proceedings of KIISE Conference : 364~369
[journal]
신동근
/ 2011
/
Forecasting Short-Term KOSPI using Wavelet Transforms and Fuzzy Neural Network
/ 한국콘텐츠학회 논문지
/ 한국콘텐츠학회
11(6)
: 1~7
[journal]
김진화
/ 2011
/
A Real-Time Stock Market Prediction Using Knowledge Accumulation
/ 지능정보연구
/ 한국지능정보시스템학회
17(4)
: 109~130
[journal]
허준영
/ 2015
/
SVM based Stock Price Forecasting Using Financial Statements
/ 정보과학회 컴퓨팅의 실제 논문지
/ 한국정보과학회
21(3)
: 167~172
[confproc] Z. Hu / 2013 / Stocks market prediction using support vector machine / Proceedings of International Conference on Information Management, Innovation Management and Industrial Engineering : 115~118
[confproc] G. Dong / 2013 / One-step and multi-step ahead stock prediction using backpropagation neural networks / Proceedings of International Conference on Information, Communicatio, and Signal Processing : 1~5
[confproc] F. Wang / 2014 / Stock volatility prediction using multi-kernel learning based extreme learning machine / Proceedings of International Joint Conference on Neural Networks : 3078~3085
[confproc] Y. Xu / 2013 / A study on feature selection for the trend prediction of stock trading price / Proceedings of International Conference on Computational and Information Sciences : 579~582
[journal] Kyoung-jae Kim / 2003 / Financial time series forecasting using support vector machines / Neurocomputing / Elsevier BV 55(1-2) : 307~319 / 10.1016/s0925-2312(03)00372-2
[confproc] Y. Lin / 2013 / An SVM-based approach for stock market trend prediction / Proceedings of International Joint Conference on Neural Networks : 1~7
[confproc] A. K. Sirohi / 2014 / Multiple kernel learning for stock price direction prediction / Proceedings of IEEE International Conference on Advances in Engineering &Technology Research : 1~4
[confproc] D. Kato / 2012 / Stock prediction using multiple time series of stock prices and news articles / Proceedings of IEEE Symposium on Computers & Informatics : 11~16
[confproc] Y. Luo / 2014 / Stock trends prediction based on hypergraph modeling clustering algorithm / Proceedings of IEEE International Conference on Progress in Informatics and Computing : 27~31
[journal] Kyoung-jae Kim / 2000 / Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index / Expert Systems with Applications / Elsevier BV 19(2) : 125~132 / 10.1016/s0957-4174(00)00027-0
[journal] Jigar Patel / 2015 / Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques / Expert Systems with Applications / Elsevier BV 42(1) : 259~268 / 10.1016/j.eswa.2014.07.040
[journal] Chih-Fong Tsai / 2010 / Combining multiple feature selection methods for stock prediction: Union, intersection, and multi-intersection approaches / Decision Support Systems / Elsevier BV 50(1) : 258~269 / 10.1016/j.dss.2010.08.028
[journal] Ming-Chi Lee / 2009 / Using support vector machine with a hybrid feature selection method to the stock trend prediction / Expert Systems with Applications / Elsevier BV 36(8) : 10896~10904 / 10.1016/j.eswa.2009.02.038
[journal] Li-Ping Ni / 2011 / Stock trend prediction based on fractal feature selection and support vector machine / Expert Systems with Applications / Elsevier BV 38(5) : 5569~5576 / 10.1016/j.eswa.2010.10.079
[journal] Arash Negahdari Kia / 2018 / A hybrid supervised semi-supervised graph-based model to predict one-day ahead movement of global stock markets and commodity prices / Expert Systems with Applications / Elsevier BV 105 : 159~173 / 10.1016/j.eswa.2018.03.037