In this paper, we propose a movie recommendation model that uses the users’ ratings as well as their reviews. To understand the user’s preference from multicriteria perspectives, the proposed model is designed to apply attribute-based sentiment analysis to the reviews. For doing this, it divides the reviews left by customers into multicriteria components according to its implicit attributes, and applies BERT-based sentiment analysis to each of them. After that, our model selectively combines the attributes that each user considers important to CF to generate recommendation results. To validate usefulness of the proposed model, we applied it to the real-world movie recommendation case.
Experimental results showed that the accuracy of the proposed model was improved compared to the traditional CF. This study has academic and practical significance since it presents a new approach to select and use models in consideration of individual characteristics, and to derive various attributes from a review instead of evaluating each of them.