The Korea Spatial Planning Review 2021 KCI Impact Factor : 1.23
Prediction of Heat Wave based on LSTM Considering Urban-social Characteristics of Busan
ABSTRACT
열림/닫힘 버튼KEYWORDS
열림/닫힘 버튼160 Viewed
47 Downloaded
KCI Citation Counts (2)
열림/닫힘 버튼[web] / e-나라지표 / http://www.index.go.kr
[confproc] 강미선 / 2018 / 한국주요도시의 폭염에 의한 사망률 평가 / 2018년 한국기상학회 가을학술대회논문집 196
[journal]
강윤희
/ 2019
/
Spatial-temporal variations in surface ozone concentrations in Busan metropolitan area
/ 한국환경과학회지
/ 한국환경과학회
28(2)
: 169~182
/ https://doi.org/10.5322/JESI.2019.28.2.169
[other] 광주지방기상청 / 2018 / 1994년과 비교한 2018년 폭염특성 / 보도자료
[journal]
구유성
/ 2015
/
Study on the Improvement of Adaptation Ability by Vulnerability Analysis of Heat Wave - the Case of Busan Metropolitan City
/ 한국지역개발학회지
/ 한국지역개발학회
27(5)
: 331~348
[web] / 국립재난안전연구원 / http://www.ndmi.go.kr
[web] / 국립해양조사원 / http://www.khoa.go.kr
[journal]
권용석
/ 2020
/
Political Effects of Countermeasures Against Heat Wave Using System Dynamics Method: Case Study in Daegu Metropolitan City
/ 국토연구
/ 국토연구원
106
: 41~64
/ 10.15793/kspr.2020.106..003
[web] / 기상청 기상자료개방 포털 / http://data.kma.go.kr
[journal]
김기욱
/ 2020
/
Assessment of Heat Wave Vulnerability in Busan Using the IPCC Climate Change Vulnerability Assessment Framework
/ 국토연구
/ 국토연구원
104
: 23~38
/ 10.15793/kspr.2020.104..002
[journal]
김영인
/ 2020
/
Prediction of Temperature and Heat Wave Occurrence for Summer Season Using Machine Learning
/ 한국방재안전학회논문집
/ 한국방재안전학회
13(2)
: 27~38
[confproc] 김예슬 / 2020 / 인공신경망을 활용한 폭염 취약성 예측 모델 개발: 대구광역시를 사례로 / 한국생태환경건축학회 학술발표대회 논문집 20(1) : 132~133
[journal]
김인겸
/ 2020
/
Evaluating Economic Value of Heat Wave Watch/Warning Information in Seoul and Busan in 2016: Focused on a Cost of Heat Wave Action Plan and Sample of Patients
/ 한국콘텐츠학회 논문지
/ 한국콘텐츠학회
20(5)
: 525~535
/ https://doi.org/10.5392/JKCA.2020.20.05.525
[journal] 김효진 / 2019 / 기후변화, 그로인한 도시폭염과 미세먼지에 대응한 안전사회 구축방안 / 법연 / 한국법제연구원 (63)
[journal]
배민기
/ 2020
/
Analysis on the Spatial Relationship between the Residential Area of the Vulnerable Groups and the Hazardous Area during the Heat Wave
/ 환경정책
/ 한국환경정책학회
28(3)
: 243~280
/ 10.15301/jepa.2020.28.3.243
[confproc] 서양모 / 2019 / 기상 데이터를 활용한 LSTM 기반 미세먼지 농도 예측 방법 비교 / 2019 한국측량학회 학술대회자료집 : 117~120
[journal]
성지훈
/ 2020
/
A Study on Identification of the Heat Vulnerability Area Considering Spatial Autocorrelation – Case Study in Daegu
/ 한국측량학회지
/ 한국측량학회
38(4)
: 295~304
/ https://doi.org/10.7848/ksgpc.2020.38.4.295
[report] 송교욱 / 2012 / 기후변화 본격화로 폭염· 폭우· 폭풍에 대한적응 필요 / 부산발전연구원
[web] / 에어코리아 / http://www.airkorea.or.kr
[journal]
오규식
/ 2005
/
The Relationship between Urban Spatial Elements and the Urban Heat Island Effect
/ 도시설계
/ 한국도시설계학회
6(1)
: 47~63
[journal]
이수미
/ 2019
/
A Study on the Influence of Urban Environment on the Generation of Thermal Diseases
/ 한국콘텐츠학회 논문지
/ 한국콘텐츠학회
19(12)
: 84~92
/ https://doi.org/10.5392/JKCA.2019.19.12.084
[journal]
이홍석
/ 2020
/
A Deep Learning LSTM Framework for Urban Traffic Flow and Fine Dust Prediction
/ 정보과학회논문지
/ 한국정보과학회
47(3)
: 292~297
/ https://doi.org/10.5626/JOK.2020.47.3.292
[journal]
이희동
/ 2020
/
Characteristics and Comparison of 2016 and 2018 Heat Wave in Korea
/ 대기
/ 한국기상학회
30(1)
: 1~15
/ 10.14191/Atmos.2020.30.1.001
[journal]
제민희
/ 2018
/
Urban Heat Island Intensity Analysis by Landuse Types
/ 한국콘텐츠학회 논문지
/ 한국콘텐츠학회
18(11)
: 1~12
/ https://doi.org/10.5392/JKCA.2018.18.11.001
[report] 조진희 / 2018 / 미시적 도시공간의 폭염취약지역분석을 통한 정책적 대응방안 / 충북연구원
[journal]
조희선
/ 2014
/
Effects of the Urban Spatial Characteristics on Urban Heat Island
/ 환경정책
/ 한국환경정책학회
22(2)
: 27~43
/ http://dx.doi.org/10.15301/jepa.2014.22.2.27
[web] / 질병관리청 / http://www.kdca.go.kr
[web] / 통계청 / http://kostat.go.kr
[report] 한국환경정책·평가연구원 기후변화리스크연구단 / 2020 / 2020 폭염영향 보고서 / 한국환경정책‧평가연구원
[confproc] 함유근 / 2016 / 폭염과 여름철 한반도 연근해 해수면변동간의 관련성 연구 / 2016 한국기상학회 가을학술대회 논문집 : 433~434
[journal]
허솔잎
/ 2019
/
An Assessment of Applicability of Heat Waves Using Extreme Forecast Index in KMA Climate Prediction System (GloSea5)
/ 대기
/ 한국기상학회
29(3)
: 257~267
/ 10.14191/Atmos.2019.29.3.257
[journal] Coutts, A. M. / 2008 / Investigating the climatic impact of urban planning strategies through the use of regional climate modeling / International Journal of Climatology 28(14) : 1943~1957 / 10.1002/joc.1680
[journal] Bauer, P. / 2015 / The quiet revolution of numerical weather prediction / Nature 525(7567) : 47~55
[other] Kingma, D. P / 2014 / Adam: A method for stochastic optimization / arXiv preprint arXiv:1412.6980
[journal] Dodla, V. B. / 2017 / Analysis and prediction of a catastrophic Indian coastal heat wave of 2015 / Natural Hazards 87(1) : 395~414
[journal] Hajat, S / 2010 / Heat-related mortality: a review and exploration of heterogeneity / Journal of Epidemiology & Community Health 64(9) : 753~760 / 10.1136/jech.2009.087999
[journal] Hochreiter, S / 1997 / Long short-term memory / Neural Computation 9(8) : 1735~1780
[journal] Khan, N. / 2019 / Prediction of heat waves in Pakistan using quantile regression forests / Atmospheric Research 221 : 1~11 / https://doi.org/10.1016/j.atmosres.2019.01.024
[journal] Kim Do-Woo / 2019 / Weekly heat wave death prediction model using zero-inflated regression approach / Theoretical and Applied Climatology 137(1-2) : 823~838
[journal] Mandal, R. / 2019 / Real time extended range prediction of heat waves over India / Scientific Reports 9(1) : 1~11
[confproc] Nair, V / 2010 / Rectified linear units improve restricted boltzmann machi / Proceedings of the 27th International Conference on Machine Learning (ICML-10) : 807~814
[journal] Park Minsoo / 2020 / Heatwave damage prediction using random forest model in Korea / Applied Sciences 10(22) : 8237~ / 10.3390/app10228237
[journal] Singh, H. / 2017 / Verification of pre-monsoon temperature forecasts over India during 2016 with a focus on heatwave prediction / Natural Hazards & Earth System Sciences 17(9) : 1469~1485 / 10.5194/nhess-17-1469-2017
[report] World Economic Forum / 2020 / The Global Risks Report / World Economic Forum