@article{ART002726049},
author={Taeho Um and Sung-Moon Hong and Joon Hyuk Yang and Hyo Seok Jang and Doh, Kyung-Goo},
title={Enhancing the performance of code-clone detection tools using code2vec},
journal={Journal of Software Assessment and Valuation},
issn={2092-8114},
year={2021},
volume={17},
number={1},
pages={31-40},
doi={10.29056/jsav.2021.06.05}
TY - JOUR
AU - Taeho Um
AU - Sung-Moon Hong
AU - Joon Hyuk Yang
AU - Hyo Seok Jang
AU - Doh, Kyung-Goo
TI - Enhancing the performance of code-clone detection tools using code2vec
JO - Journal of Software Assessment and Valuation
PY - 2021
VL - 17
IS - 1
PB - Korea Software Assessment and Valuation Society
SP - 31
EP - 40
SN - 2092-8114
AB - Plagiarism refers to the act of using the original data as if it were one’s own without revealing the source. The plagiarism of source code causes a variety of problems, including legal disputes. Plagiarism in software projects is usually determined by measuring similarity by comparing every pair of source code within two projects. However, blindly comparing every pair has been a huge computational burden, causing a major factor of not using tools of better accuracy. If we can only compare pairs that are probable to be clones, eliminating pairs that are impossible to be clones, we can concentrate more on improving the accuracy of detection. In this paper, we propose a method of selecting highly probable candidates of clone pairs by pre-classifying suspected source-codes using a machine-learning model called code2vec.
KW - program similarity;program plagiarism;machine learning;code clone;code comparison
DO - 10.29056/jsav.2021.06.05
ER -
Taeho Um, Sung-Moon Hong, Joon Hyuk Yang, Hyo Seok Jang and Doh, Kyung-Goo. (2021). Enhancing the performance of code-clone detection tools using code2vec. Journal of Software Assessment and Valuation, 17(1), 31-40.
Taeho Um, Sung-Moon Hong, Joon Hyuk Yang, Hyo Seok Jang and Doh, Kyung-Goo. 2021, "Enhancing the performance of code-clone detection tools using code2vec", Journal of Software Assessment and Valuation, vol.17, no.1 pp.31-40. Available from: doi:10.29056/jsav.2021.06.05
Taeho Um, Sung-Moon Hong, Joon Hyuk Yang, Hyo Seok Jang, Doh, Kyung-Goo "Enhancing the performance of code-clone detection tools using code2vec" Journal of Software Assessment and Valuation 17.1 pp.31-40 (2021) : 31.
Taeho Um, Sung-Moon Hong, Joon Hyuk Yang, Hyo Seok Jang, Doh, Kyung-Goo. Enhancing the performance of code-clone detection tools using code2vec. 2021; 17(1), 31-40. Available from: doi:10.29056/jsav.2021.06.05
Taeho Um, Sung-Moon Hong, Joon Hyuk Yang, Hyo Seok Jang and Doh, Kyung-Goo. "Enhancing the performance of code-clone detection tools using code2vec" Journal of Software Assessment and Valuation 17, no.1 (2021) : 31-40.doi: 10.29056/jsav.2021.06.05
Taeho Um; Sung-Moon Hong; Joon Hyuk Yang; Hyo Seok Jang; Doh, Kyung-Goo. Enhancing the performance of code-clone detection tools using code2vec. Journal of Software Assessment and Valuation, 17(1), 31-40. doi: 10.29056/jsav.2021.06.05
Taeho Um; Sung-Moon Hong; Joon Hyuk Yang; Hyo Seok Jang; Doh, Kyung-Goo. Enhancing the performance of code-clone detection tools using code2vec. Journal of Software Assessment and Valuation. 2021; 17(1) 31-40. doi: 10.29056/jsav.2021.06.05
Taeho Um, Sung-Moon Hong, Joon Hyuk Yang, Hyo Seok Jang, Doh, Kyung-Goo. Enhancing the performance of code-clone detection tools using code2vec. 2021; 17(1), 31-40. Available from: doi:10.29056/jsav.2021.06.05
Taeho Um, Sung-Moon Hong, Joon Hyuk Yang, Hyo Seok Jang and Doh, Kyung-Goo. "Enhancing the performance of code-clone detection tools using code2vec" Journal of Software Assessment and Valuation 17, no.1 (2021) : 31-40.doi: 10.29056/jsav.2021.06.05