Carbon Letters 2022 KCI Impact Factor : 0.87

Korean | English

pISSN : 1976-4251 / eISSN : 2233-4998

https://journal.kci.go.kr/carbon
Aims & Scope
moremore
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.
Editor-in-Chief
moremore
Yunsuk Huh

(Inha University)

Citation Index
moremore
  • KCI IF(2yr) : 0.87
  • KCI IF(5yr) : 0.6
  • Centrality Index(3yr) : 0.391
  • Immediacy Index : 0.3636

Current Issue : 2024, Vol.34, No.3

moremore
  • Butane working capacity of highly mesoporous polyimide-based activated carbon fibers

    Kang Da-Jung | KIM Byung-Joo | 2024, 34(3) | pp.1007~1014 | number of Cited : 0
    Abstract
    Evaporative emissions, a major cause of air pollution, are primarily produced by automobiles and can be recovered using adsorbents. This study investigated the effect of the textural properties of polyimide (PI)-based activated carbon fibers (PI-ACFs) on the adsorption and desorption performance of n-butane, which are a type of evaporative emissions. PI-ACFs were prepared by varying the activation time while maintaining the identical crosslinking and carbonization conditions. The surface morphology and microstructural properties of the ACFs were examined using a field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD), respectively. The textural properties of ACF (specific surface area, pore volume, and pore size distribution) were analyzed using N2/77 K adsorption and desorption isotherm curves. The n-butane adsorption and desorption performance were evaluated according to modified ASTM D5228. From the results, the specific surface area and total pore volume of ACFs were determined to be 680–1480 m2/g and 0.28–1.37 cm3/g, respectively. Butane activity (BA) of the ACFs increased from 14.1% to 37.1% as the activation time increased, and especially it was found to have highly correlated with pore volume in the 1.5–4.0 nm range.
  • Effects of electrodes type and design on electrical stability of conductive cement as exposed to various weathering conditions

    Jang Daeik | Yang Beomjoo | Cho Giljae | 2024, 34(3) | pp.1015~1020 | number of Cited : 0
    Abstract
    In the present study, the effects of electrodes type (copper, steel or CFRP) and design (plate or mesh) on electrical stability of conductive cement as exposed to various weathering conditions were investigated. To fabricate these composites, multi-walled carbon nanotube and carbon fiber were added to the cement composites by 0.6 and 0.4% by cement mass. Seven different types of electrodes were embedded to the samples, and their electrical stability was examined during the curing period. In addition, the fabricated samples were exposed to water ingress and cyclic heating conditions. Then, the compressive strength of the samples was evaluated to observe the interfacial bonding between the cement paste and electrodes. Based on the experimental results, it was found that the samples showed different electrical stability even their mix proportion was same. Thus, it can be concluded that the type and design of the electrodes are important in measuring the electrical properties of the conductive cement composites. Specifically, an improved electrical stability of electrodes is required when they are exposed to various weathering conditions.
  • Enhanced pursuance of dye-sensitized solar cell for indoor and outdoor stability using reduced graphene oxide @ Mn2O3 nanocomposite

    Arjun Kumar B. | Ramalingam Gopal | Al Omari Salah Addin Burhan and 4 other persons | 2024, 34(3) | pp.1021~1030 | number of Cited : 0
    Abstract
    Herein, the present work focuses on the effective counter electrode for dye-sensitized solar cells. The bottom–up approach was adapted to synthesize Mn2O3 nanorods via the hydrothermal method and the reduced graphene oxide was merged with Mn2O3 to prepare a nanocomposite. The prepared nanocomposites were subjected to physio-chemical and morphological characterizations which revealed the crystalline nature of Mn2O3 nanorods. The purity level rGO was characterized using the Raman spectrum and the Fourier transform infrared spectroscopy employed to find the functional groups. The morphological micrographs were visualized using SEM and TEM and the high aspect ratio Mn2O3 nanorods were observed with 5–7 nm and supported by rGO sheets. The electrocatalytic nature and corrosion properties of the counter electrode towards the iodide electrolyte were studied using a symmetrical cell. The as-synthesized nanocomposites were introduced as counter electrodes for DSSC and produced 4.11% of photoconversion efficiency with lower charge transfer resistance. The fabricated DSSC devices were undergone for stability tests for indoor and outdoor atmospheres, the DSSC stability showed 93% and 80% respectively for 150 days.
  • LOADING
  • LOADING