본문 바로가기
  • Home

Methanol oxidation behaviors of PtRu nanoparticles deposited onto binary carbon supports for direct methanol fuel cells

  • Carbon Letters
  • Abbr : Carbon Lett.
  • 2013, 14(2), pp.121-125
  • Publisher : Korean Carbon Society
  • Research Area : Natural Science > Natural Science General > Other Natural Sciences General

PARK SOOJIN 1 박정민 1 이슬이 1

1인하대학교

Accredited

ABSTRACT

In this study, PtRu nanoparticles deposited on binary carbon supports were developed for use in direct methanol fuel cells using carbon blacks (CBs) and multi-walled carbon nanotubes (MWCNTs). The particle sizes and morphological structures of the catalysts were analyzed using X-ray diffraction and transmission electron microscopy, and the PtRu loading content was determined using an inductively coupled plasma-mass spectrometer. The electrocatalytic characteristics for methanol oxidation were evaluated by means of cyclic voltammetry with 1 M CH3OH in a 0.5 M H2SO4 solution as the electrolyte. The PtRu particle sizes and the loading level were found to be dependent on the mixing ratio of the two carbon materials. The electroactivity of the catalysts increased with an increasing MWCNT content,reaching a maximum at 30% MWCNTs, and subsequently decreased. This was attributed to the introduction of MWCNTs as a secondary support, which provided a highly accessible surface area and caused morphological changes in the carbon supports. Consequently, the PtRu nanoparticles deposited on the binary support exhibited better performance than those deposited on the single support, and the best performance was obtained when the mass ratio of CBs to MWCNTs was 70:30.

Citation status

This is the result of checking the information with the same ISSN, publication year, volume, and start page between the WoS and the KCI journals. (as of 2023-01-02)

Total Citation Counts(KCI+WOS) (3) This is the number of times that the duplicate count has been removed by comparing the citation list of WoS and KCI.

* References for papers published after 2023 are currently being built.