본문 바로가기
  • Home

Characterization and influence of shear flow on the surface resistivity and mixing condition on the dispersion quality of multi-walled carbon nanotube/polycarbonate nanocomposites

  • Carbon Letters
  • Abbr : Carbon Lett.
  • 2015, 16(2), pp.86-92
  • Publisher : Korean Carbon Society
  • Research Area : Natural Science > Natural Science General > Other Natural Sciences General

이영실 1 Kwan Han Yoon ORD ID 2

1ICT Convergence Research Center
2금오공과대학교

Accredited

ABSTRACT

Multi-walled carbon nanotube (MWCNT)/polycarbonate (PC) nanocomposite was prepared by direct melt mixing to investigate the effect of the shear rate on the surface resistivity of the nanocomposites. In this study, an experiment was carried out to observe the shear induced orientation of the MWCNT in the polymer matrix using a very simple melt flow indexer with various loads. The compression-molded, should be eliminated. MWCNT/PC nanocomposite sample exhibited lower percolation thresholds (at 0.8 vol%) and higher electrical conductivity values than those of samples extruded by capillary and injection molding. Shear induced orientation of MWCNT was observed via scanning electron microscopy, in the direction of flow in a PC matrix during the extrusion process. The surface resistivity rose with increasing shear rate, because of the breakdown of the network junctions between MWCNTs. For real applications such as injection molding and the extrusion process, the amount of the MWCNT in the composite should be carefully selected to adjust the electrical conductivity.

Citation status

This is the result of checking the information with the same ISSN, publication year, volume, and start page between the WoS and the KCI journals. (as of 2023-01-03)

Total Citation Counts(KCI+WOS) (5) This is the number of times that the duplicate count has been removed by comparing the citation list of WoS and KCI.

Scopus Citation Counts (6) This is the result of checking the information with the same ISSN, publication year, volume, and start page between articles in KCI and the SCOPUS journals. (as of 2023-10-01)

* References for papers published after 2022 are currently being built.