본문 바로가기
  • Home

Sorption behavior of slightly reduced, three-dimensionally macroporous graphene oxides for physical loading of oils and organic solvents

  • Carbon Letters
  • Abbr : Carbon Lett.
  • 2016, 18(), pp.24-29
  • Publisher : Korean Carbon Society
  • Research Area : Natural Science > Natural Science General > Other Natural Sciences General

PARK, HOSEOK 1 Sung-Oong Kang 2

1성균관대학교
2경희대학교

Accredited

ABSTRACT

High pollutant-loading capacities (up to 319 times its own weight) are achieved by three-dimensional (3D) macroporous, slightly reduced graphene oxide (srGO) sorbents, which are prepared through ice-templating and consecutive thermal reduction. The reduction of the srGO is readily controlled by heating time under a mild condition (at 1 10–2 Torr and 200°C). The saturated sorption capacity of the hydrophilic srGO sorbent (thermally reduced for 1 h) could not be improved further even though the samples were reduced for 10 h to achieve the hydrophobic surface. The large meso- and macroporosity of the srGO sorbent, which is achieved by removing the residual water and the hydroxyl groups, is crucial for achieving the enhanced capacity. In particular, a systematic study on absorption parameters indicates that the open porosity of the 3D srGO sorbents significantly contributes to the physical loading of oils and organic solvents on the hydrophilic surface. Therefore, this study provides insight into the absorption behavior of highly macroporous graphene-based macrostructures and hence paves the way to development of promising next-generation sorbents for removal of oils and organic solvent pollutants.

Citation status

This is the result of checking the information with the same ISSN, publication year, volume, and start page between the WoS and the KCI journals. (as of 2022-07-25)

Total Citation Counts(KCI+WOS) (2) This is the number of times that the duplicate count has been removed by comparing the citation list of WoS and KCI.

Scopus Citation Counts (3) This is the result of checking the information with the same ISSN, publication year, volume, and start page between articles in KCI and the SCOPUS journals. (as of 2023-10-01)

* References for papers published after 2022 are currently being built.

This paper was written with support from the National Research Foundation of Korea.