본문 바로가기
  • Home

Pore structure control of activated carbon fiber for CO gas sensor electrode

  • Carbon Letters
  • Abbr : Carbon Lett.
  • 2016, 18(), pp.76-79
  • Publisher : Korean Carbon Society
  • Research Area : Natural Science > Natural Science General > Other Natural Sciences General

Byong Chol Bai 1 배태성 2

1충남대학교
2한국기초과학지원연구원

Accredited

ABSTRACT

Materials with porous structures developed in previous research have been used extensively in industrial purification and chemical recovery operations due to their large specific surface areas and pore volumes. Among a wide range of activation methods, chemical activation is an effective and simple method to prepare activated carbons with a high specific surface area. Depending on the chemical agents used, chemical activation can lead to unique pore structures [1-3]. CO gas detection has recently become a critical issue because CO is one of the most common air pollutants. Pollutant CO gas is produced by incomplete hydrocarbon burning and accompanies almost all combustion processes. CO is especially dangerous because it possesses no odor or color and is therefore undetectable by humans. CO gas also becomes explosive at concentrations above 12% and has a threshold limit value of 25 ppm. Vehicle exhaust is a major source of environmental CO emissions and contributes to smog formation. Thus, the development of highly selective and stable CO sensors is an important goal and will assist in the study of environmental impacts. Motivated by the increasingly strict laws for different pollutant sources, recently there has been rapid progress in the fabrication of sensors to detect and monitor the environment, and several types of gas sensors have been reported in the literature [4-9].

Citation status

This is the result of checking the information with the same ISSN, publication year, volume, and start page between the WoS and the KCI journals. (as of 2022-07-25)

Total Citation Counts(KCI+WOS) (8) This is the number of times that the duplicate count has been removed by comparing the citation list of WoS and KCI.

Scopus Citation Counts (9) This is the result of checking the information with the same ISSN, publication year, volume, and start page between articles in KCI and the SCOPUS journals. (as of 2024-10-01)

* References for papers published after 2023 are currently being built.