본문 바로가기
  • Home

Catalytic effects of heteroatom-rich carbon-based freestanding paper with high active-surface area for vanadium redox flow batteries

  • Carbon Letters
  • Abbr : Carbon Lett.
  • 2018, 28(1), pp.105-110
  • Publisher : Korean Carbon Society
  • Research Area : Natural Science > Natural Science General > Other Natural Sciences General

Lee Min Eui 1 곽효원 1 Hyoung‑Joon Jin 1

1인하대학교

Accredited

ABSTRACT

Owing to their scalability, flexible operation, and long cycle life, vanadium redox flow batteries (VRFBs) have gained immense attention over the past few years. However, the VRFBs suffer from significant polarization, which decreases their cell efficiency. The activation polarization occurring during vanadium redox reactions greatly affects the overall performance of VRFBs. Therefore, it is imperative to develop electrodes with numerous catalytic sites and a long cycle life. In this study, we synthesized heteroatom-rich carbon-based freestanding papers (H-CFPs) by a facile dispersion and filtration process. The H-CFPs exhibited high specific surface area (~820 m2 g–1) along with a number of redox-active heteroatoms (such as oxygen and nitrogen) and showed high catalytic activity for vanadium redox reactions. The H-CFP electrodes showed excellent electrochemical performance. They showed low anodic and cathodic peak potential separation (DEp) values of ~120 mV (positive electrolyte) and ~124 mV (negative electrolyte) in cyclic voltammetry conducted at a scan rate of 5 mV s–1. Hence, the H-CFP-based VRFBs showed significantly reduced polarization.

Citation status

Scopus Citation Counts (1) This is the result of checking the information with the same ISSN, publication year, volume, and start page between articles in KCI and the SCOPUS journals. (as of 2024-07-01)

* References for papers published after 2023 are currently being built.