본문 바로가기
  • Home

Retraction Note to: Core–mantle–shell novel nanostructures for efcacy escalating in poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester photovoltaics

  • Carbon Letters
  • Abbr : Carbon Lett.
  • 2022, 32(5), pp.1377-1377
  • DOI : 10.1007/s42823-022-00350-w
  • Publisher : Korean Carbon Society
  • Research Area : Natural Science > Natural Science General > Other Natural Sciences General
  • Received : May 2, 2022
  • Accepted : August 1, 2022
  • Published : August 1, 2022

Agbolaghi Samira 1

1Azarbaijan Shahid Madani Universiy

Irregular Papers

ABSTRACT

Core–mantle nanohybrids were prepared via grafting the multi-walled carbon nanotubes (MWCNTs) with polyaniline (PANI). Core–mantle–shell supramolecules were then designed by crystallization of poly(3-hexylthiophene) (P3HT) and poly[benzodithiophene-bis(decyltetradecyl-thien) naphthothiadiazole] (PBDT-DTNT) conductive polymers onto core (CNT)– mantle (PANI) nanostructures. Supramolecules were thoroughly investigated and applied in active layers of P3HT:phenyl- C71-butyric acid methyl ester (PC71BM) solar cells. Efficacies of 5.71% and 6.02% were acquired for photovoltaics based on nanostructures having PBDT-DTNT and P3HT shells, respectively. Diameters of core(CNT)–mantle(PANI), core(CNT)– mantle(PANI)–shell(P3HT), and core(CNT)–mantle(PANI)–shell(PBDT-DTNT) supramolecules ranged in 75–90 nm, 145– 160 nm, and 120–130 nm, respectively. The highest efficiency (= 6.02%) was achieved for P3HT:PC71BM:CNT-graft-PANI/ P3HT systems without any post-treatment (13.42 mA/cm2, 0.68 V, and 66%). Charge mobilities were also very high for corresponding electron-only (µe = 9.8 × 10−3 cm2/V s) and hole-only (µh = 5.0 × 10−3 cm2/V s) devices. PANI mantle may act as both acceptor and donor in core–mantle–shell supramolecules. Core(CNT)–mantle(PANI)–shell(PBDT-DTNT) nano- structures also elevated photovoltaic efficiency up to 5.71% (13.12 mA/cm2, 0.67 V, 65%, 4.7 × 10−3 cm2/V s, and 9.0 × 10−3 cm 2 /V s). Results acquired for core(CNT)–mantle(PANI)–shell(P3HT)-based systems were somehow higher than those recorded for core(CNT)–mantle(PANI)–shell(PBDT-DTNT)-based ones. It could be assigned to consistency of P3HT shells and P3HT host chains in bulk of P3HT:PC71BM active layer. P3HT backbones owing to their simpler chemical structures were also capable of arranging more ordered shells, leading to larger charge mobilities and currents

KEYWORDS

no data found.

Citation status

* References for papers published after 2023 are currently being built.