본문 바로가기
  • Home

Inorganic nanocrystal-carbon composite derived from cross-linked gallic acid derivative of polyphosphazenes for the efficient oxygen evolution reaction

  • Carbon Letters
  • Abbr : Carbon Lett.
  • 2023, 33(3), pp.737-749
  • DOI : 10.1007/s42823-022-00455-2
  • Publisher : Korean Carbon Society
  • Research Area : Natural Science > Natural Science General > Other Natural Sciences General
  • Received : September 4, 2022
  • Accepted : December 21, 2022
  • Published : May 1, 2023

Ali Zahid 1 Mushtaq M. Asim 2 Abbas Yasir 1 Liu Wei 1 Wu Zhanpeng 1

1State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology
2State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology

Accredited

ABSTRACT

The development of heteroatoms doped inorganic nanocrystal-carbon composites (INCCs) has attained a great focus for energy applications (energy production and energy storage). A precise approach to fabricate the INCCs with homogenous distribution of the heteroatoms with an appropriate distribution of metal atoms remains a challenge for material scientists. Herein, we proposed a facile two-step route to synthesize INCC with doping of metal (α-Fe2O3) and non-metals (N, P, O) using hydrogel formed by treating hexachlorocyclotriphosphazene (HCCP) and 3, 4, 5-trihydroxy benzoic acid (Gallic acid). Metal oxide was doped using an extrinsic doping approach by varying its content and non-metallic doping by an intrinsic doping approach. We have fabricated four different samples (INCC-0.5%, INCC-1.0%, INCC-1.5%, and INCC-2.0%), which exhibit the uniform distribution of the N, P, O, and α-Fe2O3 in the carbon architecture. These composite materials were applied as anode material in water oxidation catalysis (WOC); INCC-1.5% electro-catalyst confirmed by cyclic voltammetry (CV) with a noticeable catholic peak 0.85 V vs RHE and maximal current density 1.5 mA.cm−2. It also delivers better methanol tolerance and elongated stability than RuO2; this superior performance was attributed due to the homogenous distribution of the α-Fe2O3 causing in promotion of adsorption of O2 initially and a greater surface area of 1352.8 m2/g with hierarchical pore size distribution resulting higher rate of ion transportation and mass-flux.

Citation status

This is the result of checking the information with the same ISSN, publication year, volume, and start page between the WoS and the KCI journals. (as of 2024-07-26)

Total Citation Counts(KCI+WOS) (1) This is the number of times that the duplicate count has been removed by comparing the citation list of WoS and KCI.

Scopus Citation Counts (1) This is the result of checking the information with the same ISSN, publication year, volume, and start page between articles in KCI and the SCOPUS journals. (as of 2024-10-01)

* References for papers published after 2023 are currently being built.