본문 바로가기
  • Home

Ionic liquid/ZIF-67 derived Co9S8-SNC catalyst for oxygen reduction reaction in alkaline electrolyte

  • Carbon Letters
  • Abbr : Carbon Lett.
  • 2024, 34(3), pp.951-960
  • DOI : 10.1007/s42823-023-00622-z
  • Publisher : Korean Carbon Society
  • Research Area : Natural Science > Natural Science General > Other Natural Sciences General
  • Received : June 21, 2023
  • Accepted : October 11, 2023
  • Published : April 11, 2024

Gao Qiuyue 1 Li Guoru 1 Kofie Gideon 1 Chen Biaohua 1 Yin Fengxiang 1

1Changzhou University

Accredited

ABSTRACT

A series of ZIF-67-C-IL catalysts were prepared using ZIF-67 and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([BMIM]NTf2) ionic liquid as precursors. The structure of the catalysts was characterized by XRD, TEM, SEM and XPS. The catalytic performance of the catalysts for the oxygen reduction reaction (ORR) was evaluated in a three-electrode system. The results confirmed that the high-temperature treatment of the precursors resulted in the formation of N, S co-doped carbon-encapsulated Co9S8 nanoparticles. To create N, S co-doped carbon coated Co9S8 nanoparticle catalysts, ionic liquids are used as sulfur and nitrogen sources. The catalytic activity of ORR can be improved using N, S co-doped carbon to prevent the aggregation of Co9S8 nanoparticles. Graphitized and N, S co-doped carbon shells are optimal for achieving high activity stability. Optimal 600-ZIF-67-C(1:1.5)-30IL catalytic activity was observed for ORR. The half-wave potential of ORR was 0.88 V vs. RHE in 0.1 mol L−1 KOH, with a limit current density of 4.70 mA cm−2. Similar ORR electrocatalytic activity was observed between this catalyst and commercial Pt/C (20 wt%).

Citation status

Scopus Citation Counts (2) This is the result of checking the information with the same ISSN, publication year, volume, and start page between articles in KCI and the SCOPUS journals. (as of 2024-10-01)

* References for papers published after 2023 are currently being built.