본문 바로가기
  • Home

Quantitative analysis of oral disease-causing bacteria in saliva among bacterial culture, SYBRgreen qPCR and MRT-PCR method

Yong-Duk Park 1 오혜영 1 Park bok ri 1 A-Ra Cho 2 Kim, Dong-Kie 2 Jong-Hwa Jang 3

1조선대학교 치과대학 예방치과교실
2조선대학교
3한서대학교

Accredited

ABSTRACT

Objectives: The purpose of this study was to compare SYBR Green qPCR, TaqMan, and bacterial selective medium cultures for accurate quantitative analysis of oral microorganisms. Methods: The SYBR Green method is widely used to analyze the total amount of oral microorganisms in oral saliva. However, in this study, MTR-PCR method based on TaqMan method was performed using newly developed primers and probes. In addition, it was designed to confirm the detection agreement of bacteria among bacteria detection method. Results: As a result of MRT-PCR and SYBR Green qPCR analysis, more than 40 times (0.9-362.9 times) bacterium was detected by MRT-PCR. In addition, more bacteria were detected in saliva in the order of MRT-PCR, SYBR Green qPCR, and bacterium culture, and the results of MRB-PCR and SYBR Green qPCR showed the highest agreement. The agreement between the three methods for detecting P. intermedia was similar between 71.4 and 88.6%, but the agreement between MRT-PCR and SYBR Green qPCR was 80% for S. mutans. Among them, the number of total bacteria, P. intermedia and S. mutans bacteria in saliva was higher than that of SYBR Green qPCR method, and bacterium culture method by MRT-PCR method. P. intermedia and S. mutans in saliva were detected by MRT-PCR and MRT-PCR in 88.6% of cases, followed by the SYBR Green qPCR method (80.0%). Conclusions: The SYBR Green qPCR method is the same molecular biology method, but it can not analyze the germs at the same time. Bacterial culturing takes a lot of time if there is no selective culture medium. Therefore, the MRT-PCR method using newly developed primers and probes is considered to be the best method.

Citation status

* References for papers published after 2022 are currently being built.

This paper was written with support from the National Research Foundation of Korea.