본문 바로가기
  • Home

Investigation of carbon dioxide adsorption by nitrogen-doped carbons synthesized from cubic MCM-48 mesoporous silica

  • Carbon Letters
  • Abbr : Carbon Lett.
  • 2016, 18(), pp.62-66
  • Publisher : Korean Carbon Society
  • Research Area : Natural Science > Natural Science General > Other Natural Sciences General

허영정 1 Minh-Uyen T. Le 1 PARK SOOJIN 1

1인하대학교

Accredited

ABSTRACT

Carbon dioxide (CO2) is a component of the flue gas of power plants and automobile emissions. This gas is recognized as a primary greenhouse gas and is a presumed agent of climate change [1,2]. The drawbacks of the traditional MEA liquid method that is used for CO2 capture include the requirement for heavy equipment, and the toxic, flammable, corrosive, and volatile nature of the process [3]. Therefore, CO2 capture by means of adsorption in porous materials has received increasing attention because this method has proven to be superior than the conventional technologies in terms of the advantages associated with it. Compared to traditional processes, the convenient reversibility of adsorption on porous solid materials based on physisorption for the capture and release of CO2 makes this technique a greener and more cost-efficient method. To date, a variety of solid-based materials have been intensively studied for gas adsorption, especially CO2 capture, such as metal organic frameworks, covalent organic frameworks, zeolites, activated carbons, functionalized graphene, carbon molecular sieves, chemically modified mesoporous materials, etc [4-13].

Citation status

This is the result of checking the information with the same ISSN, publication year, volume, and start page between the WoS and the KCI journals. (as of 2022-07-25)

Total Citation Counts(KCI+WOS) (8) This is the number of times that the duplicate count has been removed by comparing the citation list of WoS and KCI.

Scopus Citation Counts (11) This is the result of checking the information with the same ISSN, publication year, volume, and start page between articles in KCI and the SCOPUS journals. (as of 2023-10-01)

* References for papers published after 2022 are currently being built.