본문 바로가기
  • Home

In-situ magnetization measurements and ex-situ morphological analysis of electrodeposited cobalt onto chemical vapor deposition graphene/SiO2/Si

  • Carbon Letters
  • Abbr : Carbon Lett.
  • 2017, 21(), pp.16-22
  • Publisher : Korean Carbon Society
  • Research Area : Natural Science > Natural Science General > Other Natural Sciences General

Vinícius C. De Franco 1 Gustavo M. B. Castro 2 Jeaneth Corredor 1 Daniel Mendes 1 João E. Schmidt 1

1Federal University of Rio Grande do Sul
2State University of Piauí

Accredited

ABSTRACT

Cobalt was electrodeposited onto chemical vapor deposition (CVD) graphene/Si/SiO2 substrates, during different time intervals, using an electrolyte solution containing a low concentration of cobalt sulfate. The intention was to investigate the details of the deposition process (and the dissolution process) and the resulting magnetic properties of the Co deposits on graphene. During and after electrodeposition, in-situ magnetic measurements were performed using an (AGFM). These were followed by ex situ morphological analysis of the samples with ΔtDEP 30 and 100 s by atomic force microscopy in the non-contact mode on pristine CVD graphene/SiO2/Si. We demonstrate that it is possible to electrodeposit Co onto graphene, and that in-situ magnetic measurements can also help in understanding details of the deposition process itself. The results show that the Co deposits are ferromagnetic with decreasing coercivity (HC) and demonstrate increasing magnetization on saturation (MSAT) and electric signal proportional to remanence (Mr), as a function of the amount of the electrodeposited Co. It was also found that, after the end of the dissolution process, a certain amount of cobalt remains on the graphene in oxide form (this was confirmed by X-ray photoelectron spectroscopy), as suggested by the magnetic measurements. This oxide tends to exhibit a limited asymptotic amount when cycling through the deposition/dissolution process for increasing deposition times, possibly indicating that the oxidation process is similar to the graphene surface chemistry.

Citation status

This is the result of checking the information with the same ISSN, publication year, volume, and start page between the WoS and the KCI journals. (as of 2023-07-14)

Total Citation Counts(KCI+WOS) (2) This is the number of times that the duplicate count has been removed by comparing the citation list of WoS and KCI.

Scopus Citation Counts (3) This is the result of checking the information with the same ISSN, publication year, volume, and start page between articles in KCI and the SCOPUS journals. (as of 2023-10-01)

* References for papers published after 2022 are currently being built.