본문 바로가기
  • Home

Study of complex electrodeposited thin film with multi-layer graphene-coated metal nanoparticles

  • Carbon Letters
  • Abbr : Carbon Lett.
  • 2017, 21(), pp.68-73
  • Publisher : Korean Carbon Society
  • Research Area : Natural Science > Natural Science General > Other Natural Sciences General

조영래 1 이정우 1 Chan Park 2 송영일 1 Su-Jeong Suh 1

1성균관대학교
2부경대학교

Accredited

ABSTRACT

We have demonstrated the production of thin films containing multilayer graphene-coated copper nanoparticles (MGCNs) by a commercial electrodeposition method. The MGCNs were produced by electrical wire explosion, an easily applied technique for creating hybrid metal nanoparticles. The nanoparticles had average diameters of 10–120 nm and quasi-spherical morphologies. We made a complex-electrodeposited copper thin film (CETF) with a thickness of 4.8 μm by adding 300 ppm MGCNs to the electrolyte solution and performing electrodeposition. We measured the electric properties and performed corrosion testing of the CETF. Raman spectroscopy was used to measure the bonding characteristics and estimate the number of layers in the graphene films. The resistivity of the bare-electrodeposited copper thin film (BETF) was 2.092 × 10–6 Ω·cm, and the resistivity of the CETF after the addition of 300 ppm MGCNs was decreased by 2% to ~2.049 × 10–6 Ω·cm. The corrosion resistance of the BETF was 9.306 Ω, while that of the CETF was increased to 20.04 Ω. Therefore, the CETF with MGCNs can be used in interconnection circuits for printed circuit boards or semiconductor devices on the basis of its low resistivity and high corrosion resistance.

Citation status

This is the result of checking the information with the same ISSN, publication year, volume, and start page between the WoS and the KCI journals. (as of 2023-07-14)

Total Citation Counts(KCI+WOS) (2) This is the number of times that the duplicate count has been removed by comparing the citation list of WoS and KCI.

Scopus Citation Counts (2) This is the result of checking the information with the same ISSN, publication year, volume, and start page between articles in KCI and the SCOPUS journals. (as of 2024-10-01)

* References for papers published after 2023 are currently being built.

This paper was written with support from the National Research Foundation of Korea.