본문 바로가기
  • Home

One-step microwave synthesis of magnetic biochars with sorption properties

  • Carbon Letters
  • Abbr : Carbon Lett.
  • 2018, 26(1), pp.31-42
  • Publisher : Korean Carbon Society
  • Research Area : Natural Science > Natural Science General > Other Natural Sciences General

Anton Zubrik 1 Marek Matik 1 Michal Lovás 1 Katarína Štefušová 1 Zuzana Danková 1 Slavomír Hredzák 1 Miroslava Václavíková 1 František Bendek 1 Jaroslav Briančin 1 Libor Machala 2 Jiři Pechoušek 2

1Slovak Academy of Sciences
2Palacký University

Accredited

ABSTRACT

Adsorption is one of the best methods for wastewater purification. The fact that water quality is continuously decreasing requires the development of novel, effective and cost available adsorbents. Herein, a simple procedure for the preparation of a magnetic adsorbent from agricultural waste biomass and ferrofluid has been introduced. Specifically, ferrofluid mixed with wheat straw was directly pyrolyzed either by microwave irradiation (900 W, 30 min) or by conventional heating (550°C, 90 min). Magnetic biochars were characterized by X-ray powder diffraction, Mössbauer spectroscopy, textural analysis and tested as adsorbents of As(V) oxyanion and cationic methylene blue, respectively. Results showed that microwave pyrolysis produced char with high adsorption capacity of As(V) (Qm= 25.6 mg g–1 at pH 4), whereas conventional pyrolysis was not so effective. In comparison to conventional pyrolysis, one-step microwave pyrolysis produced a material with expressive microporosity, having a nine times higher value of specific surface area as well as total pore volume. We assumed that sorption properties are also caused by several iron-bearing composites identified by Mössbauer spectroscopy ([super] paramagnetic Fe2O3, α-Fe, non-stoichiometric Fe3C, γ-Fe2O3, γ-Fe) transformed from nano-maghemite presented in the ferrofluid. Methylene blue was also more easily removed by magnetic biochar prepared by microwaves (Qm=144.9 mg g–1 at pH 10.9) compared to using conventional techniques.

Citation status

This is the result of checking the information with the same ISSN, publication year, volume, and start page between the WoS and the KCI journals. (as of 2024-07-28)

Total Citation Counts(KCI+WOS) (22) This is the number of times that the duplicate count has been removed by comparing the citation list of WoS and KCI.

Scopus Citation Counts (27) This is the result of checking the information with the same ISSN, publication year, volume, and start page between articles in KCI and the SCOPUS journals. (as of 2025-01-01)

* References for papers published after 2023 are currently being built.