Objectives: We investigated differences between the tracheostomized and the non-tracheostomized stroke patients through microbiological analysis for the purpose of preliminary explorations of full-scale clinical research in the future.
Methods: We collected tracheal aspirates samples from 5 stroke patients with tracheostomy and expectorated sputum samples from 5 stroke patients without tracheostomy. Genomic DNA from sputum samples was isolated using QIAamp DNA mini kit. The sequences were processed using Quantitative Insights into Microbial Ecology 1.9.0. Alpha-diversity was calculated using the Chao1 estimator. Beta-diversity was analyzed by UniFrac-based principal coordinates analysis (PCoA). To confirm taxa with different abundance among the groups, linear discriminant analysis effect size analysis was performed.
Results: Although alpha-diversity value of the tracheostomized group was higher than that of the non-tracheostomized group, there was no statistically significant difference. In PCoA, clear separation was seen between clusters of the tracheostomized group and that of the non-tracheostomized group. In both groups, Bacteroidetes, Proteobacteria, Fusobacteria, Firmicutes, Actinobacteria were identified as dominant in phylum level. In particular, relative richness of Proteobacteria was found to be 31% more in the tracheotomized group (36.6%) than the non-tracheostomized group (5.6%)(P<0.05). In genus level, Neisseria (24%), Prevotella (17%), Streptococcus (13%), Fusobacteria (11%), Porphyromonas (7%) were identified as dominant in the tracheostomized group. In the non-tracheostomized group, Prevotella (38%), Veillonella (20%), Neisseria (9%) were genera that found to be dominant.
Conclusions: It is meaningful in that the tracheostomized group has been identified a higher rate of microbiotas known as pathogenic in respiratory diseases compared to the non-tracheostomized group, confirming the possibility that the risk of opportunity infection may be higher.