@article{ART002851451},
author={Simyeong Cha and Jongwoo Ha and Soungwoong Yoon and Chang-Won Ahn},
title={Frontal Face Video Analysis for Detecting Fatigue States},
journal={Journal of The Korea Society of Computer and Information},
issn={1598-849X},
year={2022},
volume={27},
number={6},
pages={43-52},
doi={10.9708/jksci.2022.27.06.043}
TY - JOUR
AU - Simyeong Cha
AU - Jongwoo Ha
AU - Soungwoong Yoon
AU - Chang-Won Ahn
TI - Frontal Face Video Analysis for Detecting Fatigue States
JO - Journal of The Korea Society of Computer and Information
PY - 2022
VL - 27
IS - 6
PB - The Korean Society Of Computer And Information
SP - 43
EP - 52
SN - 1598-849X
AB - We can sense somebody's feeling fatigue, which means that fatigue can be detected through sensing human biometric signals. Numerous researches for assessing fatigue are mostly focused on diagnosing the edge of disease-level fatigue. In this study, we adapt quantitative analysis approaches for estimating qualitative data, and propose video analysis models for measuring fatigue state. Proposed three deep-learning based classification models selectively include stages of video analysis: object detection, feature extraction and time-series frame analysis algorithms to evaluate each stage's effect toward dividing the state of fatigue. Using frontal face videos collected from various fatigue situations, our CNN model shows 0.67 accuracy, which means that we empirically show the video analysis models can meaningfully detect fatigue state. Also we suggest the way of model adaptation when training and validating video data for classifying fatigue.
KW - Fatigue measurement;Video analysis;Migration;Video classification;Deep learning;Machine learning
DO - 10.9708/jksci.2022.27.06.043
ER -
Simyeong Cha, Jongwoo Ha, Soungwoong Yoon and Chang-Won Ahn. (2022). Frontal Face Video Analysis for Detecting Fatigue States. Journal of The Korea Society of Computer and Information, 27(6), 43-52.
Simyeong Cha, Jongwoo Ha, Soungwoong Yoon and Chang-Won Ahn. 2022, "Frontal Face Video Analysis for Detecting Fatigue States", Journal of The Korea Society of Computer and Information, vol.27, no.6 pp.43-52. Available from: doi:10.9708/jksci.2022.27.06.043
Simyeong Cha, Jongwoo Ha, Soungwoong Yoon, Chang-Won Ahn "Frontal Face Video Analysis for Detecting Fatigue States" Journal of The Korea Society of Computer and Information 27.6 pp.43-52 (2022) : 43.
Simyeong Cha, Jongwoo Ha, Soungwoong Yoon, Chang-Won Ahn. Frontal Face Video Analysis for Detecting Fatigue States. 2022; 27(6), 43-52. Available from: doi:10.9708/jksci.2022.27.06.043
Simyeong Cha, Jongwoo Ha, Soungwoong Yoon and Chang-Won Ahn. "Frontal Face Video Analysis for Detecting Fatigue States" Journal of The Korea Society of Computer and Information 27, no.6 (2022) : 43-52.doi: 10.9708/jksci.2022.27.06.043
Simyeong Cha; Jongwoo Ha; Soungwoong Yoon; Chang-Won Ahn. Frontal Face Video Analysis for Detecting Fatigue States. Journal of The Korea Society of Computer and Information, 27(6), 43-52. doi: 10.9708/jksci.2022.27.06.043
Simyeong Cha; Jongwoo Ha; Soungwoong Yoon; Chang-Won Ahn. Frontal Face Video Analysis for Detecting Fatigue States. Journal of The Korea Society of Computer and Information. 2022; 27(6) 43-52. doi: 10.9708/jksci.2022.27.06.043
Simyeong Cha, Jongwoo Ha, Soungwoong Yoon, Chang-Won Ahn. Frontal Face Video Analysis for Detecting Fatigue States. 2022; 27(6), 43-52. Available from: doi:10.9708/jksci.2022.27.06.043
Simyeong Cha, Jongwoo Ha, Soungwoong Yoon and Chang-Won Ahn. "Frontal Face Video Analysis for Detecting Fatigue States" Journal of The Korea Society of Computer and Information 27, no.6 (2022) : 43-52.doi: 10.9708/jksci.2022.27.06.043