Recently, methods that usea carbon-based filler, a conductive nanomaterial, have been investigated to develop composite fillers cont7aining dielectric materials. In this study, we added geometric changes to a carbon fiber, a typical carbon-based filler material, by differentiating the orientation angle and the number of plies of the fiber. We also studied the electrical and electromagnetic shield characteristics. Based on the orientation angle of 0°, the orientation angle of the carbon fiber was changed between 0, 15, 30, 45, and 90°, and 2, 4, and 6 plies were stacked for each orientation angle. The maximum effect was found when the orientation angle was 90°, which was perpendicular to the electromagnetic wave flow, as compared to 0°, in which case the electrical resistance was small. Therefore, it is verified that the orientation angle has more of an effect on the electromagnetic interference shield performance than the number of plies.