본문 바로가기
  • Home

Synergistic effect of novel ionic liquid/graphene complex on the flame retardancy of epoxy nanocomposites

  • Carbon Letters
  • Abbr : Carbon Lett.
  • 2023, 33(2), pp.501-516
  • DOI : 10.1007/s42823-022-00440-9
  • Publisher : Korean Carbon Society
  • Research Area : Natural Science > Natural Science General > Other Natural Sciences General
  • Received : August 5, 2022
  • Accepted : November 28, 2022
  • Published : March 1, 2023

Zhang Chunhong 1 Xu Zice 1 Sui Wenbo 1 Zang Junbo 1 Ao Yuhui 1 Wang Lu 1 Shang Lei 1

1Changchun University of Technology

Accredited

ABSTRACT

Epoxy resin (EP) is a thermosetting resin with excellent properties, but its application is limited due to its high brittleness and poor flame retardancy. Therefore, to solve this problem, a dispersion system of imidazole-containing ionic liquid ([Dmim]Es) and graphene in epoxy resin is designed based on the π–π stacking effect between imidazole and graphite layers. The study on the thermal and flame-retardant properties of the composites show that the modified [Dmim]Es–graphene nanosheets improved the flame retardancy, smoke suppression and thermal stability of epoxy resin. With the addition of 5wt% [Dmim]Es and 1% Gra, the exothermic rate (HRR) and total exothermic (THR) of the composites decrease by 35% and 30.2% compared with the untreated epoxy cross-linking, respectively. The limiting oxygen index reaches 33.4%, the UL-94 test rating reaches V-0. The characterization of mechanical properties shows that the tensile properties and impact properties increased by 13% and 30%, respectively. Through SEM observation, the addition of [Dmim]Es improves the dispersion of graphene in the EP collective and changes the mechanical fracture behavior. The results show that ionic liquid [Dmim]Es-modified graphene nanosheets are well dispersed in the matrix, which not only improves the mechanical properties of epoxy resin (EP), but also has a synergistic effect on flame retardancy. This work provides novel flame-retardant and graphene dispersion methods that broaden the range of applications of epoxy resins.

Citation status

This is the result of checking the information with the same ISSN, publication year, volume, and start page between the WoS and the KCI journals. (as of 2024-07-26)

Total Citation Counts(KCI+WOS) (5) This is the number of times that the duplicate count has been removed by comparing the citation list of WoS and KCI.

Scopus Citation Counts (7) This is the result of checking the information with the same ISSN, publication year, volume, and start page between articles in KCI and the SCOPUS journals. (as of 2024-10-01)

* References for papers published after 2023 are currently being built.