Visualization of documents will help users when they do search similar documents, and all research in information retrieval addresses itself to the problem of a user with an information need facing a data source containing an acceptable solution to that need. In various contexts, adequate solutions to this problem have included alphabetized cubbyholes housing papyrus rolls, microfilm registers, card catalogs and inverted files coded onto discs. Many information retrieval systems rely on the use of a document surrogate. Though they might be surprise to discover it, nearly every information seeker uses an array of document surrogates. Summaries, tables of contents, abstracts, reviews, and MARC recordsthese are all document surrogates. That is, they stand infor a document allowing a user to make some decision regarding it, whether to retrieve a book from the stacks, whether to read an entire article, etc.In this paper another type of document surrogate is investigated using a grouping method of term list. Using Multidimensional Scaling Method (MDS) those surrogates are visualized on two-dimensional graph. The distances between dots on the two-dimensional graph can be represented as the similarity of the documents. More close the distance, more similar the documents.