[journal]
Beaunoyer, E.
/ 2017
/ Understanding online health information: Evaluation, tools, and strategies
/ Patient education and counseling
100(2)
: 183~189
[journal]
Bhargavi, P.
/ 2009
/ Applying naive bayes data mining technique for classification of agricultural land soils
/ International journal of computer science and network security
9(8)
: 117~122
[book]
Borras-Morell, J. E.
/ 2015
/ Data Mining in Clinical Medicine
/ Humana Press
: 123~130
[journal]
Brug, J.
/ 2004
/ SARS risk perception, knowledge, precautions, and information sources, the Netherlands
/ Emerging infectious diseases
10(8)
: 1486~
[confproc]
Castillo, C.
/ 2011
/ Information credibility on twitter
/ Proceedings of the 20th international conference on World wide web
/ ACM
: 675~684
[confproc]
Chen, R.
/ 2013
/ Perspective matters: Sharing of crisis information in social media
/ System Sciences (HICSS), 2013 46th Hawaii International Conference on
/ IEEE
: 2033~2041
[journal]
Chew, C.
/ 2010
/ Pandemics in the age of Twitter:content analysis of Tweets during the 2009 H1N1 outbreak
/ PloS one
5(11)
: e14118~
[journal]
Covello, V. T.
/ 2001
/ Risk communication, the West Nile virus epidemic, and bioterrorism:responding to the commnication challenges posed by the intentional or unintentional release of a pathogen in an urban setting
/ Journal of Urban Health
78(2)
: 382~391
[journal]
D'Alfonso, S.
/ 2017
/ Artificial intelligence-assisted online social therapy for youth mental health
/ Frontiers in psychology
8
: 796~
[book]
Dosemagen, S.
/ 2016
/ How Social Media Is Shaking Up Public Health and Healthcare
/ Published on The Huffington Post website
: 27~
[journal]
Gabarron, E.
/ 2015
/ Is there a weekly pattern for health searches on Wikipedia and is the pattern unique to health topics?
/ Journal of medical Internet research
17(12)
: e286~
[journal]
Ghiassi, M.
/ 2013
/ Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network
/ Expert Systems with applications
40(16)
: 6266~6282
[journal]
Gidengil, C. A.
/ 2012
/ Trends in risk perceptions and vaccination intentions: a longitudinal study of the first year of the H1N1 pandemic
/ American Journal of Public Health
102(4)
: 672~679
[journal]
Gohil, S.
/ 2018
/ Sentiment analysis of health care tweets: review of the methods used
/ JMIR public health and surveillance
4(2)
: e43~
[journal]
Greaves, F.
/ 2013
/ Use of sentiment analysis for capturing patient experience from free-text comments posted online
/ Journal of medical Internet research
15(11)
: e239~
[journal]
Hirschberg, J.
/ 2015
/ Advances in natural language processing
/ Science
349(6245)
: 261~266
[confproc]
Hoang, T. A.
/ 2012
/ Virality and Susceptibility in Information Diffusions
/ Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media
: 146~153
[journal]
Hornikx, J.
/ 2015
/ Consumer tweets about brands: A content analysis of sentiment tweets about goods and services
/ Journal of Creative Communications
10(2)
: 176~185
[journal]
Huffaker, D.
/ 2010
/ Dimensions of leadership and social influence in online communities
/ Human Communication Research
36(4)
: 593~617
[book]
Lippmann, W.
/ 2017
/ Public opinion
/ Routledge
[journal]
Li, Y.
/ 2018
/ Seeking and sharing health information on social media: A net valence model and cross-cultural comparison
/ Technological Forecasting and Social Change
126
: 28~40
[confproc]
Lee, K.
/ 2011
/ Twitter trending topic classification
/ Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on
/ IEEE
: 251~258
[journal]
Mazzocut, M.
/ 2016
/ Web conversations about complementary and alternative medicines and cancer: content and sentiment analysis
/ Journal of medical Internet research
18(6)
: e120~
[journal]
Nath, C.
/ 2016
/ Website sharing in online health communities: a descriptive analysis
/ Journal of medical Internet research
18(1)
: e11~
[journal]
Oscar, N.
/ 2017
/ Machine learning, sentiment analysis, and tweets: An examination of Alzheimer’s disease stigma on Twitter
/ Journals of Gerontology: Psychological Sciences
72
: 742~775
[journal]
Oyeyemi, S. O.
/ 2014
/ Ebola, Twitter, and misinformation: a dangerous combination?
/ Bmj
349
: g6178~
[confproc]
Read, J.
/ 2005
/ Using emoticons to reduce dependency in machine learning techniques for sentiment classification
/ Proceedings of the ACL student research workshop
/ Association for Computational Linguistics
: 43~48
[journal]
Rui, H.
/ 2013
/ Whose and what chatter matters? The effect of tweets on movie sales
/ Decision Support Systems
55(4)
: 863~870
[journal]
Salathé, M.
/ 2011
/ Assessing vaccination sentiments with online social media: implications for infectious disease dynamics and control
/ PLoS computational biology
7(10)
: e1002199~
[journal]
Seale, H.
/ 2010
/ Why do I need it? I am not at risk! Public perceptions towards the pandemic (H1N1) 2009 vaccine
/ BMC infectious diseases
10(1)
: 99~
[thesis]
Signorini, A.
/ 2014
/ Use of social media to monitor and predict outbreaks and public opinion on health topics
/ PhD
/ University of Iowa
[journal]
Sjöberg, L.
/ 2000
/ Factors in risk perception
/ Risk analysis
20(1)
: 1~12
[journal]
Sjöberg, L.
/ 2007
/ Emotions and risk perception
/ Risk management
9(4)
: 223~237
[journal]
Slovic, P.
/ 1987
/ Perception of risk
/ Science
236(4799)
: 280~285
[journal]
Slovic, P.
/ 2005
/ Affect, risk, and decision making
/ Health psychology
24(4S)
: S35~
[book]
Som, I.
/ 2012
/ Information Diffusion in Online Social Media: The Role of Message and User Characteristics in Retweeting on Twitter
/ Korea Intelligent Information System Society
[journal]
Stieglitz, S.
/ 2013
/ Emotions and information diffusion in social media-sentiment of microblogs and sharing behavior
/ Journal of management information systems
29(4)
: 217~248
[confproc]
Szomszor, M.
/ 2011
/ Twitter informatics:tracking and understanding public reaction during the 2009 swine flu pandemic
/ Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology-Volume 01
/ IEEE Computer Society
: 320~323
[journal]
Tversky, A.
/ 1974
/ Judgment under uncertainty:Heuristics and biases
/ science
185(4157)
: 1124~1131
[journal]
Weinstein, N. D.
/ 1980
/ Unrealistic optimism about future life events
/ Journal of personality and social psychology
39(5)
: 806~
[journal]
Wynn, R.
/ 2017
/ Tweets are not always supportive of patients with mental disorders
/ International J Integrated Care
17(3)
: A149~A149
[journal]
Xie, X. F.
/ 2011
/ The role of emotions in risk communication
/ Risk Analysis: An International Journal
31(3)
: 450~465
[confproc]
Yang, J.
/ 2010
/ Predicting the Speed, Scale, and Range of Information Diffusion in Twitter
/ Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media
10(2010)
: 355~358
[confproc]
Zhang, H.
/ 2014
/ Machine Learning and Lexicon based Methods for Sentiment Classification: A Survey
/ Proceedings of the 2014 11th Web Information System and Application Conference
/ IEEE
: 262~265