Recently, NAND flash memory, which is used as a storage medium, is replacing HDD (Hard Disk Drive) at a high speed due to various advantages such as fast access speed, low power, and easy portability. In order to apply NAND flash memory to a computer system, a Flash Translation Layer (FTL) is indispensably required. FTL provides a number of features such as address mapping, garbage collection, wear leveling, and hot data identification. In particular, hot data identification is an algorithm that identifies specific pages where data updates frequently occur. Hot data identification helps to improve overall performance by identifying and managing hot data separately. MHF (Multi hash framework) technique, known as hot data identification technique, records the number of write operations in memory. The recorded value is evaluated and judged as hot data. However, the method of counting the number of times in a write request is not enough to judge a page as a hot data page.
In this paper, we propose hot data identification which considers not only the number of write requests but also the persistence of write requests.