Using the acoustic features of speech, important social and linguistic information about the speaker can be obtained, and one of the key features is the dialect. A speaker's use of a dialect is a major barrier to interaction with a computer. Dialects can be distinguished at various levels such as phonemes, syllables, words, phrases, and sentences, but it is difficult to distinguish dialects by identifying them one by one. Therefore, in this paper, we propose a lightweight Korean dialect classification model using only MFCC among the features of speech data. We study the optimal method to utilize MFCC features through Korean conversational voice data, and compare the classification performance of five Korean dialects in Gyeonggi/Seoul, Gangwon, Chungcheong, Jeolla, and Gyeongsang in eight machine learning and deep learning classification models. The performance of most classification models was improved by normalizing the MFCC, and the accuracy was improved by 1.07% and F1-score by 2.04% compared to the best performance of the classification model before normalizing the MFCC.